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ABSTRACT is an integer multiple of. for simplicity), the link will be

We present end-to-end measurement methods for the detec@ble to transmii: of those packets at the rate of the capacity
tion of traffic shaping. Traffic shaping is typically imple- €, with k= 11,/0- After thosek packets, the link will start
mented using token buckets, allowing a maximum burst of transmitting packets at the token generation pat&Jsually
traffic to be serviced at the peak capacity of the link, while p is referred to as the “shaping rate”, the capacitys also
any remaining traffic is serviced at a lower shaping rate. referred to as the “peak rate”, whiteis referred to as the
The contribution of this paper is threefold. First, we de- “maximum burst size”. Another way to describe a traffic
velop an active end-to-end detection mechanism, referredshaper is by specifying that ttreaximum number of bytes
to as ShaperProbe, that can infer whether a particular paththat can be transmitted in any interval of duratigrstarting

is subject to traffic shaping, and in that case, estimate thewith a full token bucket, is:

shaper characteristics. Second, we analyze results from a
large-scale deployment of ShaperProbe on M-Lab over the
last few months, detecting traffic shaping in several major  The difference between a traffic shaper and a traffic policer
ISPs. Our deployment has received more than one million js that the former has a buffer to hold packets that arrive
users so far from 5,700 ISPs. Third, we modify the Shaper- \yhen the token bucket is empty [6]. A policer simply drops
Probe detection algorithm so that it can be applied passivel sych “non-conforming” packets. In other words, a shaper
on the traffic of any TCP-based application. We apply this delays packets that exceed the traffic shaping profilg},
passive method in NDT traces, also collected at M-Lab. Our while a policer drops therh. Policers can cause excessive
work is the first to design detection methodologies and to packet losses and so shapers are more common in practice -

A(t) = min{L + Cr,0 + p7}

measure traffic shaping deployments in the Internet. we focus on the latter in the rest of the paper.
Why would a residential ISP deploy traffic shaping? First,
1. Introduction to allow a user to exceed the service rate that he/she has paid

The increasing penetration of broadband access technolo-for’ for a limited burst size. In that case the user payspfor

gies, such as DSL, DOCSIS and WIMAX, provides users bps, with the additional service capacity— p is marketed

it e range of upstream and dounstea serveraies £ 8 158 Sr/Ee Sruancee, TS o et how
Broadband users need to know whether they actually get thenism [5]. Second, an ISP may want to limit the sper\?ice rate
service rates they pay for. On the other hand, ISPs now have ; ’ y

an extensive toolbox of traffic management mechanisms theyglrj(;\t/cI)Orl‘r?grtootrhti T‘%’ﬁﬁgﬁ:ﬁfg Par?edggre]guor;ggnbsu;nggrgr?
can apply to their customers’ traffic: application classje ’ y

schedulers, active queue managers etc. In this paper Weagm'g)attﬁ]oen“é%'gfegégorgfsgé -l;g?tiggga?; s?r?%ngcésrt?rlle
focus on a class of such mechanisms referred ttradfic v W utradl - 1hirg, '

shapersor traffic policers? ISPs prefer to describe their service rates as upper boands f

A traffic shaper is a single-input single-output packet for- mgzi éﬁbuzerlvr\l"ghz?g:gg g:téﬁég'éfcizwg?;esz? tr;“::g)rce
warding module that behaves as follows: Consider a link of the U erpb(;und of the se}vice ra?e
capacityC' bps, associated with a “token bucket” of size PP :

tokens. Whenever the bucket is not full, tokens are gener- ve-Irohe gr?ggtli?/:tlgg dci];;t]:qupei'csﬁéwﬁggé Ii:;rl:r}é\rl\r/: dde-
ated at a rate tokens per second, with < C. The link can P n

transmit an arriving packet of size bits only if the token to asS_haperProb_ethat can infer vv_hether a particul_ar path
bucket has at leadt tokens - upon the transmission of the is subject to trafﬂ_c _shaplng, and in ihat case, estimate the
packet, the shaper consumisokens from the bucket. So shaper characieristicS, p ands. Second, we analyze re-
if we start with a full token bucket of size tokens, and with sults from a large-scale deployment of ShaperProbe on M-

a large burst of packets of siZebits each (suppose that Lab over the last few months, detectlng.trafﬁc shaping n
several major ISPs. Our deployment received about one mil-

*School of Computer Science, Contact author: partha@ezlyadu lion runs over the last two years from more than 5,700 ISPs;
IWhen it is not important to distinguish between shaping asliting, we
will simply refer to such mechanisms as “traffic shapers’ust j'shapers”. 2A shaper will also drop packets once its droptail buffer is fu
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work. We conclude in Section 8.
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2. Active Probing Method

The active probing method is an end-to-end process in
which a sendelSAD sends packets on the network path
to the receivefRCY. We diagnose traffic shaping for the
pathSN'D — RCV atRCV. Suppose that the narrow link’s
capacity on the path i¢’, and that the sender probes at a
constant bit rateR, = C.

The receiveRCV records the received rate timesetigst).
We computeR,.(t) by discretizing time into fixed size non-
overlapping intervals of sizA. For simplicity, assume that
Figure 1. ShaperProbe: volume of runs. The gaps in time the probing starts at= 0, and that intervals are numbered as
show downtime due to tool enhancements. integers > 1. Thei'thinterval includes all packets received
in the interval[(i — 1) A, iA), where packet timestamps are
taken atRCV upon receipt of the last bit of each packet. The
discretized received rate timeserigs(i) is estimated as the
total bytes received in intervaddivided byA. Note that this
estimator ofR, (¢) can resultin an error of up to= +5/A
whereS is the MTU packet size. By choosing a reasonably
largeA, we can reduce the magnitudecoklative to the true
received rate.

In the presence of a token bucket traffic shaper (or policer)
onSN'D — RCV, there exists a value éf> 1 at which the
received rate timeserieR, (i) undergoes devel shift to a
(a) Location of clients. lower value Our goal is to detect the presence of a level
shift, and estimate the token bucket parameters uBing).

2.1 Detection

We want to detect a level shift iR,. in real-time(as we
ompute the received rate in each new interval). Note that
the receiveRCV is also receiving (and timestamping) pack-
ets during this process. Hence, our detection method has to
be simple. Our detection method is straightforward and re-
lies on nonparametric rank statistics Bf to be robust to
outliers [14].

We compute ranks online. Suppose that we have estimated
n values ofR, so far (in other words, the probing duration
is nA). At the start of each new interval + 1 (receipt of
first packet in the interval), we compuf®.(n) and update
the ranks(i) of R,-(i) fori = 1...n. We callr as thestart
of level shiftif all of the following three conditions hold true
(for the smallest such index):
First, all ranks to the left of areequal to or higheithan
ranks to the right of:
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Figure 2: ShaperProbe: location of clients.

we currently receive 2,000-3,000 users a day (see Figures 2(:
and 1). Third, we modify the ShaperProbe detection algo-
rithm so that it can be applied passively on the traffic of any
TCP-based application. This approach can be used to de
tect if an ISP shapes the traffic of specific applications. We
apply this passive method in the Network Diagnostic Tool
(NDT) traces [9] collected at M-Lab. NDT is a TCP speed
test and diagnosis tool, which collects packet traces fer 10
TCP bulk-transfers in upload and download directions.
Traffic shaping detection and estimation methods can be
used in different waysas a library (API)that allows ap-
plications to adapt their performance in apen-loopfash-
ion; and as aservicethat enables users and administrators
to verify their SLAs/shaping configurations. In this paper,
we design a service. There are several challenges that wey)
need to tackle when designing a service that can scale up to

thousands of users a day: fraocuracyto usabilityto non- ~min (i) > max r(j) (1)
intrusivenesgon the network). In the following sections, we =t JETHLn
look at each of the factors. Second, we have observed a minimum time duration before
The rest of this paper is structured as follows. Section 2 and after the current rate measurement:
describes the active detection method. Section 3 discusses
np <7<nN-—ng (2)

implementation and deployment of ShaperProbe, and some
of the measurement systems issues we had to tackle over reThe value ofn, is chosen based on empirical observations
visions of the tool. Section 4 looks at the data we collected of burst durations in ISPs, and; is a sanity check to ensure

from ShaperProbe using case studies of four ISPs. Sectiorthat the drop in rate is not a temporal variation (e.g., due to
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Figure 3: Active probing: Level shift detection.

cross traffic). Third, we require that there igleop in the
median rate at point:
R.(i

i=1...

) > 'Vfir )

R (j)
J=T..m
whereR, denotes the median, andis a suitable threshold

(we includer in both median estimates). We use the non-
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Figure 4: Advertised tiers for Comcast and Cox: requived
andA.

Figure 4 shows the ratip and burst duratiofgminimum
time required to consume tokens of a full bucket) using ad-
vertised tier information that we collected for Cox, and for
Comcast in metro Atlanta. We note that all tiers have a

parametric median rate instead of the mean so that we arecapacity-to-shaping rate ratio of 1.1 and above, with twb ou

not heavily influenced by the magnitude of temporal drops
in rate. We choose based on empirical observations of ca-
pacities and shaping rates in ISPs (Section 2.3).

Similarly, we detect theend of level shifindex 5 such
that > 7 andg is thelast point which satisfies the rate
condition in Equation 1. Figure 3 illustrates the two level
shift indices.

2.2 Estimation

After we detect a level shift, we estimate the token bucket
parameters from the rate timeserigsand the start and end
level shift indicesr and3. The token generation rate (shap-
ing rate)p is estimated as themedianof received rate mea-
surementafter 3 (median to be robust to outliers):

R,.(i)
i=pF+1...n
We estimate the token bucket depth (burst sizéjom the
number of bytes sent till the'th time interval. We estimate
a range fow, since we discretize time in to intervals of size
A, based on the estimate p{p) and the received rates:

[R(i) — p| A
2

p= (4)

T

&= [R(i)—plA+

i=1

(%)

We assume in this discussion that the sent rate was alwayﬁe

higher thanp - we ensure this by designing our probing

method to be able to send at a constant rate close to the nar

row link capacity (Section 3).

2.3 Parameter Selection

We choose the parameteksand~ empirically, based on
our experience with shaping detections in ISPs. Some of the
parameters have been revised over new releases of Shape
Probe, and the current values are as follows.

of 36 tiers having a ratio of 1.1. We choose= 1.1 in our
implementation. A conservative (low) works in practice,
given that we require a number of points before and after the
level shift, and that we send a constant rate probing stream.

We fix the probing duratior\ so that we detect as many
ISP shaping configurations as possible, while at the same
time keeping the total experiment duration reasonablesa ca
of no-shaping. We see from Figure 4 that the burst duration
is at most 48s, except for four tiers out of 36. We/set 60s
in our implementation.

Next, the averaging window sizA is chosen so that it
is large enough to offset estimation noisefth and small
enough to include sufficient rate samples for detectingel lev
shift in a probing time of\. We fix A as follows. We per-
form 100 trials in the upstream direction on a Comcast res-
idential connection, whose SLA we know (4.5Mbps shaped
to 2Mbps). Figure 5 shows the shaping detection rate for
different values ofA. We see that ad approaches the inter-
packet gap, the detection rate drops. We fix a large value,
A = 300ms, so that we can detect shaping in low capacity
links.

3. Implementing ShaperProbe

While implementing ShaperProbe, we faced several chal-
nges in designing a tool that works well on a variety of

network conditions, OS platforms, and form factors (desk-

tops and portable devices). First, we require a fast and-accu
rate estimate of the narrow link capacity between the sender
and receiver; we use this estimate to probe the end-to-end
path. We use packet trains for capacity estimation; this es-
timate, however, has to be robust to non-FCFS links such

ENote that ISPs do not advertise bucket depths for some tiersshoose
themost likelyo for a givenp based on the ShaperProbe data.
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Figure 5: Effect ofA: Comcast upstream. Figure 6: Estimation accuracy: shaping emulation.

as “noisy” 802.11 deployments in homes. Second, we de-first served by one of three load balancers, which redirects
sign the probing method to be able to send afoastant clients to a server instance uniform randomly; a fall-thylou
rate, even at coarse-grained userspace OS timer granulari-mechanism further redirects clients from busy servers. The
ties. While doing so, we avoid consuming CPU resources service has received about one million user runs over the las
on the sender. Third, the ShaperProbe client has to be nontwo years, and we currently receive 2000-3000 runs a day.
intrusive - it ends probing if it sees losses on the path (and Figures 2 and 1 show the volume and geography of runs.
reports to the user a diagnostic). Finally, cross trafficten t
path may lead to temporal drops in the received ftein
spite of the above implementation details - we need to de-
sign a filtering mechanism oR,. that can removeutliers
We discuss all of the above detailsAppendix A.

In this section, we describe the tool design and our expe-

rience in improving measurement accuracy, reliability and Accuracy: We test the latest version of the ShaperProbe
mitigating noise, as well as our implementation of the M- ggnice on two residential ISPs, AT&T and Comcast, at two
Lab Shape_rProbe service [11], which has been operational,omes in metro Atlanta. We use the High-Speed Internet
on M-Lab since May 2009. _ service of Comcast, and the DSL service of AT&T. At ex-
The M-Lab Service:We have implemented the Shaper- periment time, Comcast was shapiftPMbps up, 22Mbps
Probe client in user space on three platforms: Windows, down} to {2Mbps up, 12Mbps dowi[5], while AT&T fixed
Linux, and OS X for 32-bit and 64-bit architectures. The |ink capacities to{512Kbps up, 6Mbps down[2] without
server runs on Linux. The non-GUI server-client function- shaping. Out of 60 runs, we found zero false positives in
ality is about 6000 lines of open source native code. The gjiher direction on AT&T, and two upstream false negatives
client is a download-and-click binary and does not require e (o capacity underestimation (under cross traffic) on-Com
superuser privileges or installation. A version of the Sftap .t
Probe client has also been ported as a plugin t/teeBit- We next emulate token bucket shaping on a wide-area path
Torrent client, and clocks several hundreds of users aday. petween a residential Comcast connection and a server de-
The server and client establish a TCP control channel for ployed at the Georgia Tech campus. We use the LARTC
signaling. The client starts with capacity estimation ithbo - 501 on Linux with a 2.6.22 kernel on a dual-NIC 1GHz
upstream and downstream directions, and follows it with cejeron router with 256MB RAM. Figure 6 shows the Wilcoxon
shaping detection in each direction. At the server, we 109 megian estimate and confidence intervals for ShaperProbe’s
per-packet send and receive timestamps and sequence NUMen parameter estimates on 20 trials for each token bucket

bers for all probing phases of;{;e tool, and the IP address qnfiguration in the downstream direction. ShaperProbe de-
and server timestamp for each ruA typical run of Shaper- a5 a1l 200 trials as shaping, and accurately estimates th
Probe in a residential connection lasts for about 2.5-3 min- shaping rate and bucket depth for all configurations.

utes. We now look at an analysis of M-Lab data. The Shaper-

ShaperProbe has been implemented as a service on M-Lalp gpe service [11] has been up since May 2009, and had

[11]. We currently run ShaperProbe server replicas on 48 gea several improvements over the first few months. We
M-Lab machines connected to tier-1 ASes. For measure- giart with preprocessing on our traces.

ment accuracy, we allow only one client at a time at one  paa preprocessing:We analyze data collected from the
server replica. Incoming client measurement requests arégpanerpProbe service. First, we consider runs from thetlates
“ShaperProbe data is provided unanonymized by M-Lab. ShaperProbe release, collected between 20th October 2009

4. Shaping in ISPs

In this section, we take a first look at results from the
ShaperProbe service deployed at M-Lab. We first look at
accuracy using two ISPs for which we know the shaping
ground truth, as well as using wide-area emulations.




ISP | Upstream (%)] Dwnstrm. (%)]

| C (Mbps) | p (Mbps) [ o (MB) | Burst time (s)|

Comcast | 71.5(34874)| 73.5(28272) 35 1 5 16.7
Road Runnel 6.5 (7923) | 63.9(5870) 18 2 5,10 | 15.2,305
AT&T 10.1(8808) | 10.9 (7748) 8.8 55 10 25.8
Cox 63(5797) | 47.4(4357) 145 10 10 18.8

MCI-Verizon | 5.6 (8753) | 8.4 (7733) (a) Upstream,

Table 1: Shaping detections: top-5 ISPs in terms of Shaper- [ C"(Mbps) [ p (Mbps) [ o (MB) [ Burst time (s)]

Probe runs. For each ISP we show percentage of runs with 194 6.4 10 6.4
detected shaping and number of total runs. 511 158 10 101

28.2 17 20 14.9
and 9th May 2011 (845,223 runs). Each run’s trace con- 34.4 23.4 20 15.3

tains per-packet timestamps and sequence numbers for up-
stream and downstream probing (“half runs”). Second, we
call a half run as “unfinished” if no shaping was detected
and the run lasted less than a threshold duration, and discar

such runs - we choose a conservative threshold of 50s. Alljons in our observations between October 2009 and May
finished half runs which are not diagnosed as shaping arepq1. Figure 7 shows the shaping configuration (capacity,
considered as cases 106-shaping Note that ShaperProbe  ghaning rate, and burst size) of each user run. We see that
probes each direction for 60s, and ends a half run if it either {hare are strongnodesin the data; Table 2 is a summary of
found shaping or if it found packet losses during probing; @ hese modes. For higher link capacities, we see more num-
half run can also be unfinished if the user aborted the client o, 5f modes in the shaping rate; however, at the tail of the
before it could run to completion. After preprocessing, we capacity distribution, there is only one shaping rate toat c
have a total of 281,394 upstream and 236,423 downstreanyegnonds to the higher service tier provided by Comcast. We
half runs from a total of 5,693 ISPs. _ . verified our tier observations with the Comcast website list
Next, we cluster AS numbers into ISPs using théibi S 4513 5], Note that we may not observe all service tiers in
AS names. The AS information was obtained from Cymru's is figure, depending on the distribution of users we regeiv
whois database in May 2011. We found that runs which 5¢r05s tiers. We also observe two to three burst sizes that ar

passed the pre-processing checks come from 5,167 I1SPSgeq across all tiers; the PowerBoost FAQ mentions 10MB
The top five ISPs in terms of the number of runs we received, 54 5MB burst sizes [4].

and the fraction of shaping detections are shown in Table 1. Note that the capacity curves do not show strong modes

It should be noted that there are several factors that influ- ,4jike the shaping rates. This is due to the underlying DOC-
ence the fraction of shaping detections of an ISP. Firsts ISP g5 access technology. The cable modem uplink is a non-
provide multiple tiers of service, and some tiers may not gjrg scheduler; depending on activity of other nodes at the
have shaping (and tiers evolve with time). Second, an ISP ciTs; the capacity estimates can vary due to the scheduling
may not deploy shaping in all geographic regions. Third, 5,4 pOCSIS concatenation. A DOCSIS downlink can also

the access link type can be a factor: a DSL provider can jyqyence dispersion-based capacity estimates depending o
dynamically change link capacity instead of shaping, while activity in the neighborhood, since it is a point-to-muttipt
a cable provider is more likely to shape since DOCSIS pro- broadcast link.

vides fixed access capacities. Fourth, for a given conngctio g4 shaping configurations change with timeANe com-

shaping could be dynamic based on time or load conditions pare data separated by about two years from Comcast - col-
in the ISP. Fifth, an ISP1 can advertise address prefixes on |acted in October 2009-March 2010 and in 2011 (March-
its customers’ behalf, and some of these customersiggay May). Figure 8 shows pdf estimates of shaping rates using

could be ISPs deploying shaping (whiledoes not) - we 5 Gayssian kernel density function. We see that the capacity
can not distinguist! from B based on BGP prefix-t0-ASN 514 shaping rates in the upstream direction did not change

mapping. We study some of these factors in ISP case stud-jgificantly: while the downstream links show a new ca-

ies next. A few ISPs, however, disclose their tier shaping pacity mode of 30Mbps and a shaping rate mode of 22Mbps

configurations; in such cases, we validate our observations i, 2011. We did not find significant changes in burst size

with time. Note that the above analysis assumes that the dis-

4.1 Case Study: Comcast tribution of users across tiers remainddnticalbetween the
Comcast offers Internet connectivity to homes [5] and en- two times.

terprises [3], and uses two types of access technologies: ca Did shaping parameters change with time of day?\Ve

ble (DOCSIS 3.0) and Ethernet. In each access category, itcompare runs at 1200 and 0000 hours UTC (timestamps are

offers multiple tiers of service. Comcast shapes traffiogisi  taken at the server) in Figure 9; the data is taken from March-

the PowerBoost technology [4]. May 2011. We see that the upstream shaping rates have a
Shaping profiles: We observed many shaping configura- similar distribution between the two times; the downstream

(b) Downstream.

Table 2: Comcast: detected shaping properties.
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Figure 10: Comcast: CDF of capacities in shaping and shap-
ing rate in non-shaping runs.

rates show a slight difference in densities - the lower sh@pi
rates show a higher density at eveningsin US times (PST/EST)
The burst sizes show a similar trend - we see a higher den-
sity of lower burst sizes in the evenings than in the mornings
Note that the above analysis assumesttiatiser sample (in
terms of tier) that we get at different hours of day are identi
cally distributed

Non-shaped runs: We look at all runs which were not
diagnosed as shaping. Figure 10 compares distributions of
capacities among such runs with shaping rates from shaping-
detected runs. The non-shaped capacity distributions are
similar to the shaping rate distributions; non-shaping runs
can occur due to one or more of the following two reasons.
First, Comcast provides service tiers which do not include
PowerBoost, but have capacities similar to tiers with Pewer
Boost (e.g., the Ethernet 1Mbps and 10Mbps service for
businesses). Second, it is possible that cross traffic fham t
customer premises resulted in an empty token bucket at the
start of the experiment, and hence the estimated capacity wa
equal to the shaping rate (and we do not detect shaping).

4.2 Case Studies: Road Runner and Cox

Road Runner (RR) is a cable ISP that provides different
tiers of service. A unique aspect of RR is that we have found
evidence of downstream shaping, md evidenceof up-
steam shaping in any tier on its web pages. The ShaperProbe
trials with Road Runner also support this observation - 94%
of upstream rundid notdetect shaping, while 64% of down-
stream runs found shaping. Another aspect of RR is that the
website advertises shaping based on the geographic region;
for example, in Texas, RR provides four service tiers, the
lower two of which are not shaped, while the upper two tiers
are shaped [10]. Figure 11 shows the downstream shaping
properties in our RR runs. We see three dominant shaping
rates and a single dominant burst size. Under the hypothesis
that Road Runner is not shaping upstream traffic, we can say
that our false positive detection rate for its upstream @uhb
6.4%.

The distribution of capacity among non-shaping detected
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Figure 11: Road Runner: Downstream shaping.
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RR runs is shown in Figure 12 (x-axis is truncated). An 4.3 Case Study: AT&T

interesting observation with the RR non-shaping runs i tha

Our final case study is that of an ISP for which we do not

unlike the case for Comcast, the downstream capacity modesee a significant number of shaping detections (10% or less).
of 750Kbps in non-shaping runs does not equal any of the AT&T provides Internet access to a wide range of customers,
shaping modes. This may indicate the possibility that some from homes and small businesses to enterprises (including
of the runs in Figure 12 are tiers that do not include shaping. other ISPs). They use DSL and Ethernet access technolo-
Cox provides residential [7] and business Internet accessgies, and provide four tiers of DSL services [1, 2]. We did
using cable and Ethernet access technologies. Similar tonot find any mention of traffic shaping in the AT&T tier de-
Comcast and RR, Cox shapes traffic at different tiers for both scriptions [1, 2].
residential and business classes; the website shows that th Capacity: We first look at the 90% runs that were not
residential shaping rates and capacities are dependeston g detected as shaping. The distribution of capacities of non-
ography. Moreover, we could gather residential tier shgpin shaped runs is shown in Figure 14. Given the point-to-point
data from the Cox residential website [7]. For example, the nature of DSL links, we can estimate the narrow link capac-
upstream shaping properties of Cox runs in Figure 13 agreeity more accurately than cable links; we see many modes
with some of the ground truth tier information that we found: in the capacity distribution{330Kbps, 650Kbps, 1Mbps,
(C, p)Mbps: (1, 0.77), (1.3, 1), (2, 1.5), (2.5, 1), (2.5, 2), (3, 1.5Mbpg for upstream, anfi1Mbps, 2.5Mbps, 5Mbps, 6Mbps,
2), (3.5, 3), (5, 4) and (5.5, 5). Note that the ground truth we 11Mbps, 18Mbps for downstream. Note that some of these
collected represents a single time snapshot; while the datarates might be offered by ISPs which are customers of AT&T,
covers two years. We also found a single burst size modebut whose prefixes are advertised through an AT&T’s ASN.
among the runs. We did not observe changes in the capacity modes between



T p— link service rate temporarily back to the capacity) - he_nce,
0000h UTG —r the rate may not be bounded pyWe can not use the active
detection method as-is on TCP traces for the above reasons.
Specifically, our technique needs to distinguish throughpu
- ‘ ‘ e level shifts due to a shaper from those due to TCP backoffs.
0 5000 10000 15000 ~ 20000 ~ 25000 30000 Our passive detection method works on the received rate
Upstream capacity (Kbps) timeseriesR,.(t), and uses two properties @i, () when
there is a shaper: (1) there will be a timat which R,.(¢)
undergoes a level shift, and (2) after the level shift, the re
ceived rate imlmost constanffor a duration that depends on
the connection’s round-trip time and the link buffer size).
S \ Rate estimation: We begin by constructing a received
20000 30000 40000 50000 60000 rate timeseriesk,.(i), i > 1, by dividing time into discrete
Downstream capacity (Kbps) non-overlapping intervals of siz&. It is important that we
choose a suitable value fdr so that we have sufficient num-
ber of rate measurements to detect a level shift, and at the
same time have lowoise We estimate\ based on the TCP
) ; L trace, since the inter-packet gaps can vary depending on TCP
Did capacity change with time of day?We look atthe 5 ¢y offs and timeouts. In the NDT traces, we have observed
capacity distribution at two one-hour_ periods Of. day S€Pa- that some token bucket implementations generate tokens in
rated by 12h; and con5|der non-shaping traces in the pe,”Odperiodic intervals ;). Depending on the length of this in-
March-May 2011. Figure 15 shows a pdf of the capacity (g4 packets buffered in a shaper that has no tokens aill b
at the two UTC times. We see that tfeative densitieof served in short bursts (of sizé,, bytes) at the link capacity
link capacities did not change significantly between défér o long as there is a backlog. In order to redvmeancein

times of day. _ the post-shaping rate timeseries, we estinfaté) as fol-
Shaping runs: We look at properties of the 10% of AT&T |51\

runs which were diagnosed as shaping; see Figure 16. We \ye rocord the start and end timestamps of received pack-
see that about a third of these runs show a strong shapingys i thei'th interval: call thems(i) ande(i). If we received
rate mode and an associated burst size mode. Out of the 33 (i) bytes in thei'th interval, we estimate®, (i) using the
runs which had a shaping rate mode, 80% of the hostnamesier-burst gapy:

resolved to the domaimchsi . com which is owned by the

cable ISP Mediacom [8]. This case represents a limitation R (i) B(i)

0 10600 ’
Figure 15: AT&T: pdf of capacity based on time of day.

2009, 2010 and 2011.

of our IP address to ISP translation method. O
. where,0, = max{s(i+1)—s(i),e(i) —e(i—1)}. The max.
5. Passive Method condition is to avoid overestimates Bf.(7) by using a small

In this section, we design a technique for passive inference,, especially in the post-shaping estimatesB(f) = 0 for
of traffic shaping. The passive inference technique takes assomei, we setR,.(i) = 0. We ignore the TCP handshake
input an application packet trace (either real-time or oéi and termination exchanges when computityg
at a sendeSA'D or the receiverRCV®. The passive in- Note that in the above description, we assumed fhat)
ference method is useful over active probing to detect casess estimated using the application packet tracRayv. We
where an ISP is shaping certain classes of traffic based onhave implemented the previous method for a trace captured
parameters such as destination/source which may not alwaystSND by observing sequence numbers of TCP ACKs from
be feasible to replicate with active probing. RCV. This works even in the case of delayed ACKs, since
We consider the specific case of a bulk-transfer applica- we treat each ACK as lagical packetat RCV, whose size
tion that uses TCP. Detecting shaping on TCP traffic is chal- is determined by difference in ACK sequence numbers, and
lenging for a number of reasons. First, TCP throughput can whose receive timestamp is estimated as the receive times-
change with time depending on network conditions, and a tamp of the corresponding ACK. We ignore duplicate ACKs
level shift in TCP throughput occurs every time TCP de- in this computation.
creases its window due to timeouts or packet losses. Sec- Note that it is unlikely that the TCP ACKs will be paced
ond, TCP does not send a constant-rate stream, and so itlue to shaping in the other direction during a TCP trans-
harder to estimate the number of tokens in the token bucket.fer, since the MSS-to-ACK size ratio (about 28.8 without L2
There can be time periods in which the TCP connection’s headers) is much larger than the capacity ratio in asymenetri
throughput is below the shaping rate, causing accumulationlinks.
of tokens. Third, after shaping kicks-in, TCP backoffs and .
timeouts can lead to accumulation of tokens (bringing the 5.1 Detection
5Since a TCP end-point can be both sender and receiver (degeoithe We use a sliding window of size points on the rate time-
application), we distinguish sender from receiver basedsam input. seriesR,. to detect shaping. The value ofis chosen small
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so that we can observe level shifts and constancy of a feweach burstis served at the link capaditywith a large inter-

points after the level shift (without noticing TCP-basettra
drops). Suppose thatis odd and letv = 2k +1 points. We
say that there is a level shifiue to shapingt a given point
7 if all of the following conditions hold true in a window
centered at (we require that > k).

First, k rate values before are larger than thé rate val-
ues afterr:

R@G)  (6)

min > max
i=(r—k)...(t—1) j=(r4+1)...(7+k)

Second, theggregatehroughput ofw points beforer is sig-
nificantly larger than theggregatethroughput ofw points
afterr®:
R,.(i)
i=(t—w)...(t—1)

Ry (j)
J=(r+1)..(r4w)

>y (7)

for a thresholdy > 1. We use aggregate throughput and not
median, sincev is small. Third, we have received at least
one packet in each interval afterr in aw-window:

Ro(i)£0,i=(r+1)...(r +w) 8)

This condition allows us to discard some cases of TCP time-

outs. Finally, we requireonstancy of ratén the w points
afterr. We elaborate on this condition next.
Rate constancy:This condition differentiates TCP recov-

burst gap. We account for this temporal burstiness in oer rat
constancy heuristic.

The basic idea is to look at “variability” of a timeseries
of cumulative bytesB.(t), received aiRCV. The variabil-
ity would be higher for TCP recovery than for output of a
shaper. In order to construé.(t), we identify bursts of
packets served at the link capacity. We identify a burstas th
largest set of consecutive packets in which each packet pair
is received at a rate higher thardC. For each identified
burst, we add a point, B) to B.(t), wheret is the times-
tamp of the first packet in the burst, afds the cumulative
bytes received up to the end of that burst. At the end of the
window 7 + w, if B.(t) contains less than 5 points, we say
that the post-shaping ratenst constant

Once we construcB,.(t), we sample uniform randomly
pairs of pointgt1, B.(t1)) and construct the slope; of the
line connecting them. We construct 500 such samples (with
replacement), and estimate thenparametric variabilityof
the set of slopedf = {m; ...ms00}. The variability esti-
matev(M) of M is defined agMy o — Moy.1)/My.5, where
M, is thep-percentile value in\/. We avoid using the para-
metric equivalent, coefficient of variation, since it canbibe
ased by few “outlier” slope samples. We say that the rate
post-shaping iconstantif, for all packets received in the
time interval[r + 1, 7 + w|, v(M) < 0.15 (we observed that

ery dynamics after a loss/timeout from the output of a shaper s threshold is appropriate in our experiments with NDT

just after it runs out of tokens. The property we test is that
just after the shaper runs out of tokens, incoming packets ar
buffered and serviced at the raigfor a sufficiently small
duration), since the incoming rate is larger thann other
words, in this period, the inter-packet gap will be ab8yp,
where S is the current packet size. In practice, however,

some token bucket implementations serve fixed-size bursts

traces from various ISPSs).

5.2 Estimation

Once we detect the presence of shaping at psjintve
determine the shaping parameters as follows.
The shaping rate is estimated as the aggregate received

of packets during a shaping period. The size of this burst rate in a window ofw points after pointr (or m points if

depends on the inter-token gép and the token ratg, and

61f  is such that we have less thanpoints before or after it, we consider
only those points.

10

there arék < m < w points afterr):

R.(j)
J=(r D) ()

p= (9)



The link capacityC' is estimated as the aggregate received
rate inw points beforer:

Rate ratio: The value ofy is chosen so that we accom-
modate as many shaping cases as possible. We found that
~v = 1.6 helps in eliminating false positives due to TCP-
based rate drops. This value is larger thaim our active
detection method, and we are working on making it more

It is relatively challenging to estimate the token bucket robust to TCP artifacts.
deptho since the TCP send rate can be variable, and the
arrival rate at the shaper can in fact be lower thaven be-
fore shaping starts. Given the received rate timesétj€s),
the size of tokens in the token bucket at tiine given by the
recursive relation:

C=  R(i)

i=(t—w)...(t—1)

(10)

6. Evaluating Passive Detection

We use traces collected from M-Lab’s Network Diagnos-
tic Tool (NDT) [9] from 25 April to 27 April, 2010. NDT
performs a TCP bulk-transfer in upstream and downstream
directions for 10s and collects per-packet traces at theser
side kernel. Incoming NDT clients are redirected to the hear
est M-Lab NDT server instance based on latency.

We consider only finished runs of NDT, which have a half
run duration of exactly 10s. We analyze traces collected in
the client upstream direction, since the shaping may be more
likely to start in the limited duration of 10s in the upstream
than in the downstream direction.

Accuracy: To benchmarkthe accuracy of our passive method,
we collect 452 NDT upstream traces from March 11, 2010
from an M-Lab server in the US. We manually classify each
trace into shaping and non-shaping categories based on vi-
sual inspection of the rate timeseries. The averaging-inter

In our implementation, we Us€yi, = 10KB, omax = val to plot the rate timeseries is based on the passive algo-
100MB, and define the approx. relation abovefags< 5KB rithm for determiningA. We found a total of 12 shaping
(close to the minimum bucket size on commercial imple- cases out of 452 cases. Our method detects 11 of 12 cases
mentations, as seen in NDT traces). Since binary searchas shaping, and all of the remaining 440 non-shaping cases
finishes in logarithmic time, it is possible to implement the as non-shaping. Note that the number of shaping cases is

6(i) = max {min{6(i — 1) — [R, (1) — p] A, 0} ,0}
(11)
where,o is the bucket depthi(0) = o, ands (7 + 1) = 0.
We estimate the bucket deptha@as= 5(0).

Equation 11 is nonlinear and depends e@ritself. We
solve foro as follows. We construct a functier(r + 1) =
fo(p,7, R, A, ) that gives the value of token bytes after
shaping,s(r + 1), given a value for = 6. The function
f- has the following properties: (1) it is non-decreasing as
a function ofg, (2) f, =~ 0 for 6 < o and (3)f, increases
monotonically witho for 6 > o. We solve foro using bi-
nary search on an interv@,in, omax] such thato is the
maximum value of for which f, ~ 0.

above estimation in a live TCP capture.

5.3 Parameter Selection

We describe how we choose paramet®rs, andy, based
on our observations using NDT data from different ISPs.
Averaging interval: The value ofA hasto be large enough

so that we construct a low variance rate timeseries. We de-

termine A as thelargestvalue for which we do not have
any zero rate points i®,. In addition, we bound\ so that
Anin < A < Apax- Inour implementation, we empirically
chooseA .., = 250ms andA,,,;, = 30ms. 'The above up-
per bound om\ implies that for a given TCP trace, we may
still have zero rate points iR,..

We efficiently determine the value &f using binary search.
For cases where the trace is collected at the sefléP, we
useAn.x = 500ms to allow for TCP implementations that
use delayed ACKs.

Window size: The value ofw is chosen based on the esti-
mate ofA and the trace duratiaf, as the number oA time
intervals that that fit in a fraction of: w = xA/A points
for somex < 0.5. We choose: = 0.2 in our implementa-
tion, and round-offv to the nearest odd integer. Note that as

A increasesw decreases to accomodate the same window

duration.

"We could also choosé\ i, by estimating the connection’s round-trip
time at the time of the TCP handshake.

11

small (2.65%), since we are using a small experiment du-
ration (10s), and in addition, the onset of shaping can be
delayed due to TCP send rate variations.

We have also run the passive method on some of the Shaper-
Probe traces to verify that the two methods give consistent
results.

Traces: We now look at a larger set of NDT upstream
runs collected on 25-27 April 2010 for which we have ASN
to ISP name mapping (we use sibling data from [25]). We
have a total of 148,414 upstream runs from 900 ISPs. These
traces are collected froall M-Lab servers, and correspond
to clients from countries including US. The top ISP shaping
detections by number of runs are Comcast, Road Runner,
Telecom ltalia, AT&T, Verizon and Cox.

We found that we see 0-2.1% upstream shaping detections
for ISPs in the list, except for Cox, which had 20.5% (615
out of 2,998 runs) detections. For example, we saw 2.1%
(284 out of 13,536) shaping detections in Comcast. Note that
we observed less than 15% shaping detections for AT&T,
Road Runner, and Verizon in the ShaperProbe data. This
may be because of the experiment duration of 10s - for ex-
ample, in the case of Comcast (Table 2(a)), we see that the
minimum duration it takes to empty the token bucket among
the upstream configurationsis 15.2s (with a constant bét-ra
stream sent at the link capacity); hence, we would not be able
to see shaping in a 10s Comcast upstream trace. The burst
duration may be longer with TCP rate variations, and we also
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ICMP probes to detect loss rate-based discrimination. NetD
iff [18] uses ICMP performance and associates it with geog-
_ . ) . raphy to diagnose differences in backbone ISPs. POPI [17]
require a minimum duration GfAs after shaping. The frac-  yetects priority-based forwarding by observing loss rages
tion of shaping detections also depends on the distribution yeen two flows. DiffProbe [15] detects delay and loss dis-

of runs among the tiers of the ISPs during the three-day data mination by comparing an emulated application flow with
collection period. Under the hypothesis that all upstream g orma|flow. Weinsberet al. further infer weights of a dis-
tiers of Comcast exceed the 10s burst duration (or do ”°tcriminatory scheduler [22]. In the classification areaffiza

have shaping), we can say that the false positive detecotionmorphing [23] tackles avoiding statistical classification
rate for the passive method in cable upstream is about 2%. altering flow characteristics.

Figure 17: Passive detection: Cox: upstream.

6.1 Case Study: Cox Capacity estimation in non-FIFO scheduling environments
such as wireless and cable upstream received attentioa in th

~Among the ISPs in our traces, we found Cox to have a sig- jierature, since existing bandwidth estimation techajas-
nificant number of upstream shaping detections of 20%. Us- g, me FIFO scheduling. Lakshminarayamaral. [16] pro-

ing the per-region advertised shaping configurations we col o6 probegap for available bandwidth estimation in cable
lected from the Cox website [7], we computed the expected upstream and in 802.11 links. Portoles-Cometza. study

burst duration (for a constant send rate(9f Assuminga e impact of contention delays on packets in a packet train
burst size of 3MB that we observed in the ShaperProbe data,[19]’ which can, under certain conditions, result in the.802

we found thaf[ thgre is one tier Which has a burst duration Ie_sscapacity overestimates that we observed.
than 10s - this tier has a capacity of 25Mbps and a shaping
rate of 20Mbps (and burst duration of 5.03s). . . .
Figure 17 shows shaping configurations of the Cox runs. 8- Discussion-Conclusion
The plot shows strong shaping rate and burst size modes sim- Service providers increasingly deploy traffic management
ilar to Figure 13, which is the counterpart using active prob practices such as shaping and policing to manage resource
ing (we show the same capacity ranges for the two plots). We hungry distributed applications. In this work, we presénte
see that some tiers are not sampled in this data as comparedn end-to-end active probing, detection, and estimatidhaoae
to those in ShaperProbe, since the latter is more historical of traffic shaping in ISPs. We have deployed our tool as a
All tiers in this plot have a burst duration less than 10s - for service on the M-Lab platform for about a year now, and
example, for all runs with the 1Mbps shaping rate, the av- discussed some of measurement issues that we have tackled
erage capacity is 4.82Mbps; and with a 3MB token bucket over three releases of ShaperProbe. We showed using runs
size, the expected burst duration is 6.6s. on two ISPs (with known shaping SLAs), and through em-
We found the following advertised tiers on the Cox web- ulations, that ShaperProbe has false positive and falsa neg
site (in May 2010) for shaping rates of 1Mbps and 2Mbps: tive detection rates of less than 5% in both directions.
{C,p} of {1.3, BMbps, {2.5, I}Mbps, {2.5, 2}Mbps, and We presented a first large-scale study of shaping, in four
{3, 2}Mbps. We see that the range of the estimated capaci-ISPs among our runs. We validated some of our observa-
ties for these two shaping rates are higher than the ade@rtis tions using advertised tier data from ISPs. Characterstic
rates. We plan to collect historical NDT traces to invegéga our plots is a strong modality of shaping rates and bursssize

this observation as a part of future work. across shaping detections, suggesting that ISPs typibadly
ploy a small set of shaping configurations. We found some
7. Related Work shaping detections for which the ISPs did not mention shap-

Traffic shaping and policing are available in many network ing in their service descriptioAsLack of publicly-available

quices that work at L2 a_-nd abc’_ve [21’ 6]- Initial O_bserVa' 81SPs, however, typically mention in their SLAs that “listegpacities may
tions of downstream traffic shaping were recorded in a res- vary”.
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information, however, does not necessary imply that thesedelay process in CSMA/CA access links, due to which a
are false detections. downstream train may have to wait until the channel is free

We extended our active detection and estimation meth-[19]. We also observed differences in overestimates with
ods to work on passive TCP traffic traces. We evaluated thesome 802.11g NICs depending on the operating system/driver
passive detection method on upstream traces collected fromimplementation. In order to avoid such overestimates, we
NDT on M-Lab. We also looked at detected shaping config- send along packet train after we determine the train-based
urations of an ISP, and verified the configurations with the capacity estimate. Specifically, if the train-based esténg
corresponding ShaperProbe data. Cr, we send a UDP stream of MTU-sized packets at a rate

We found that upstream TCP traces with a duration of 10s ;. on SN'D — RCV for a duration of 5s and revise our
are not sufficiently long to detect shaping. This can have capacity estimate to be the aggregate received rate in that
implications on speed tests that rely on 10s transfers iposs duration. Note that this UDP stream will only induce large
bly over TCP). The result of such a speed test would either queue backlog if we have a significant capacity overestimate
be close to the peak rate (before shaping), or a value that

falls between the peak rate and the shaping rate - because oprobing and Non-intrusivenesg. is important that we

which a user may interpret the outcome as incorrect. send the probing stream for shaping detection at a constant
] ) rate that is close to the capacity for two reasons. First,
Appendix A: ShaperProbe Implementation we may detect false negatives if we cannot send at a rate

We have assumed in the discussion in Section 2 that we haveedual to the path capacity. Second, end-host effects such
an estimate of the narrow link capacity. In practice, we can @S operating system noise and context switches due to the
have cross traffic in the path, last mile wireless links, and client environment can lead to drops in the sending rate at

end-host effects, which can add significantly to probing and S/V'D, leading to potential false positives. We probe using
measurement noise. MTU-sized (sizeS) packets, and send all probing traffic over

UDP.

Capacity EstimationWe require an estimate of the nar-  Probing: The goal of the sender is to send a sequence of
row link capacity on theSN'D — RCV path before we pac_kets atarate cIosgm fora maximum ofA = 60s. For
probe for traffic shapers, since it determines our probitegra & 9iven sending rate, implementations of packet trains typi
We need an accurate estimate so that: (1) we minimize intru-Cally use a CPU-intensive busy-wait loop to maintain inter-
siveness, i.e., not create persistent queue backlogsjrathe ~ Packet gaps at userspace. Busy-wait loops can lead to a drop
due to our probing, and (2) we are able to consume tokens inin Sénd rate, since a sender process runningsxtended pe-
the experiment duration. We implement capacity estimation "0ds would yield to other processes. To avoid such scenar-
as apre-probingphase. ios, we send periodishort-duration trainsof back-to-back

We estimate capacity using UDP packet trains. Specifi- Packets to minimize time spent in busy-waits.
cally, SN'D sends a packet train 6f MTU-sized (sizeS) We determine the length of short-duration trains at run-
back-to-back packet,, ps . .. py } to RCV. After receiv-  time as follows. The idea is to minimize the duration spent
ing the train;RCY estimates the narrow link capacity using ©N Pusy-waits. \We first measure the userspace sleep res-

the train dispersion (calculated as the difference between olution periodt, on SN'D, which is the minimum dura-
received timestamps gfy andp:): tion the send process can sleep without the need for a busy-

wait loop. The train lengthV, (packets) is then determined
as the value which minimizes the residual delgyV,) =
Npg — | Npg/ts|ts whereg = S/C (the inter-packet gap).

0 We upper boundV, to 30 packets to accommodate OSes
We repeat this measurement figrtrains and determine the  with a low sleep time resolution (e.g., some flavors of Win-
path capacity as the median of thétrain estimates to re-  dows). We maintain the probing rate by: (1) sending train of
duce underestimates due to cross-traffic. In ourimplementa size N, (2) sleeping for a duratioty for | N,g/ts] (integer)
tion, we useV = 50 packets andS = 10 trains. Note that if times; followed by (3) ahortbusy-wait ford(V,,).

o (N =1s

we do not receive a part of the trdjwe useN as the num- Non-intrusiveness: We stop probing aSA/D if either
ber of received packets, ands computed as the dispersion of the following is true: (1YRCV detected a traffic shaper,
of thereceivedtrain. (2) SN'D probed for the experiment duratidn or (3)RCY

In practice, we found that the above methodology works detected packet losses. We record the packet loss ratedn tim
well for wired end-hosts, but tends to incorrectly estimate windows of A. We abort on packet losses if we either see a
the narrow link capacity in the downstream direction when |ow loss rate (more than 1%) for a small time period, or if
the last mile is a wireless (802.11a/b/g) link - in cases wher we see a high loss rate (more than 10%) for a smaller time
the narrow link is not the wireless link. This overestima- period (a few consecutive time windows - it is necessary that
tion® occurs because of the non-work-conserving contentionthis duration is longer thanz A).

9We use a timeout of 1s to receive each packet of the train.
10Typical downstream train overestimates on 802.11g aredrrahge 25-
35Mbps, close to the L2 channel throughput.
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Filtering Rate Noise The received rate timeserié&s may [9] Network Diagnostic Tool (M-Lab)

have temporal variations (“noise”) &-timescales in prac- http://ww. neasurement | ab. net/

tice, even ifSND sends at a constant rate, due to cross traf- nmeasur ement - | ab- t ool s#ndt .

fic variations in intermediate links or due to end-host noise [10] Road Runner cable: central Texas (May 12, 2010)
at RCV. Such noise manifests asitliers We pre-process http://ww. ti mewar ner cabl e. com

the R, timeseries with a simple filtering heuristic before run- central tx/ | earn/hso/ roadrunner/

ning the level shift algorithm. Each time we compute a new speedpricing. htm .

rate valueR, (n), we condition the valu&,.(n — ny) as fol- [11] ShaperProbe (M-Lab)

lows (assuming: > 2ny). We compute the median ofy http://ww. measur enent| ab. net/

rate points to the left (saﬁﬁlf) andny points to the right measur enent - | ab- t ool s#di f f pr obe.

(say sz) of the pointn — ny. We modify R,.(n — ny) [12] M. Dischinger, A. Haeberlen, K. Gummadi, and

R ~ - S. Saroiu. Characterizing residential broadband
l T
if it is either greater than or less thaoth i, and ], . networks. INACM IMC, 2007.

Under this condition, we modify the rate value to the mean - .
- VI " . [13] M. Dischinger, M. Marcon, S. Guha, K. Gummadi,
Br(n—ny) = (R, + 1, )/2. We condition each rate point R. Mahajan, and S. Saroiu. Glasnost: Enabling End

at most once dur_lng the experiment, Users to Detect Traffic Differentiation. ISENIX
When we modify a rate point, we need to recompute ranks NSDL 2010

of all rate values that fall between the old value and the new . .
value of R, (n — ny). Note that this filtering method would [14] M. Hollander and D. Wolfe. Nonparametric statistical
! methods. 1973.

not changeate values that lie in the;-neighborhood of the o _ _
level shift pointsr and3, since the median condition on the  [15] P- Kanuparthy and C. Dovrolis. DiffProbe: Detecting
ISP Service Discrimination. IEEEE INFOCOM

n — ny point would not be satisfied for such points. We say

that a rateR, is larger thanR,, if R, > vR;, wherey is the 2010. )
rate threshold in Equation 3. [16] K. Lakshminarayanan, V. N. Padmanabhan, and

J. Padhye. Bandwidth estimation in broadband access
REFERENCES networks. INACM IMC, 2007.

[17] G. Lu, Y. Chen, S. Birrer, F. Bustamante, C. Cheung,
and X. Li. End-to-end inference of router packet
forwarding priority. INNEEE INFOCOM 2007.

[1] AT&T FastAccess Business DSL Plans (May 12,
2010) htt p: // smal | busi ness. bel | sout h.

com internet_dsl _services. htm. . .
- = [18] R. Mahajan, M. Zhang, L. Poole, and V. Pai.
[2] ﬁ;l’ch Ija;stAccek;ssll?SL Ptlz;ns (Mn?y 12,2010) / Uncovering performance differences among backbone
i ne?érvw ngt stgs égo afg”f]me[) ISPs with Netdiff. INnUSENIX NSDI 2008
sre=l ft nav —conp ' ' [19] M. Portoles-Comeras, A. Cabellos-Aparicio,
3 ; J. Mangues-Bafalluy, A. Banchs, and
[3] E:totmca/s} Eusmess Class Intertnet (Mn?y 12,2010) J. Domingo-Pascual. Impact of transient CSMA/CA
it zr net fj'etr]zisls'scgggis - €0 access delays on active bandwidth measurements. In
: ' ’ ACM IMC, 2009.
[4] ﬁ:totmca/s} nght Speed Internet ::AQ' rl;oz)verBoc/)st [20] M. Tarig, M. Motiwala, N. Feamster, and M. Ammar.
FA P: t\c/us oner. cofr)nt:as. ’ EO ages Detecting network neutrality violations with causal
| ntqélriet g(?‘gﬁrj'e?fpx' opt c= inference. INPACM CoNEXT 2009.
8b2f c392- 4cde- 4750- ba34- 051cd5feacfo. 121 G VargheseNetwork Algorithmics: an
[5] Comcast High-Speed Intemet (residential: May 12 interdisciplinary approach to designing fast networked
2010) ht t 9// P concast . cont - May devicesMorgan Kaufmann, 2005.
Cor por atF()a./ Lear n./ H ahS e.edl nt er net / [22] U. Weinsberg, A. Soule, and L. Massoulie. Inferring
b ghsp traffic shaping and policy parameters using end host

speedconpari son. ht i . -
[6] Comparing Traffic Policing and Traffic Shaping for ?Oelalsurements. WE=EE INFOCOM Mini-conference

Bandwidth Limiting.Cisco Systems: Document ID: [23] C. Wright, S. Coull, and F. Monrose. Traffic

19645 morphing: An efficient defense against statistical

7 Cox Residentel et (120 12 2010 o vafc analysis INDSS 2000
. Zhang, Z. Mao, and M. Zhang. Detecting traffic
b pt. cox. P 24] Y. Zhang, Z. M d M. Zhang. Detecting traffi

i 2
?ﬁéi:g:?géﬁf?i?gﬁgi{c I ntercept. cox: differentiation in backbone ISPs with NetPolice. In
’ ACM IMC, 2009.

[8] Mediacom: Hish-speed Internet (May 12, 2010) [25] Y. Zhang, R. Oliveira, H. Zhang, and L. Zhang.

Ihtn: gr /n/et O.nlrr}aggaﬁ?m:abl e. com Quantifying the Pitfalls of Traceroute in AS
- ' ' Connectivity Inference. IPAM, 2010.

14



