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ABSTRACT
We present end-to-end measurement methods for the detec-
tion of traffic shaping. Traffic shaping is typically imple-
mented using token buckets, allowing a maximum burst of
traffic to be serviced at the peak capacity of the link, while
any remaining traffic is serviced at a lower shaping rate.
The contribution of this paper is threefold. First, we de-
velop an active end-to-end detection mechanism, referred
to as ShaperProbe, that can infer whether a particular path
is subject to traffic shaping, and in that case, estimate the
shaper characteristics. Second, we analyze results from a
large-scale deployment of ShaperProbe on M-Lab over the
last few months, detecting traffic shaping in several major
ISPs. Our deployment has received more than one million
users so far from 5,700 ISPs. Third, we modify the Shaper-
Probe detection algorithm so that it can be applied passively
on the traffic of any TCP-based application. We apply this
passive method in NDT traces, also collected at M-Lab. Our
work is the first to design detection methodologies and to
measure traffic shaping deployments in the Internet.

1. Introduction
The increasing penetration of broadband access technolo-

gies, such as DSL, DOCSIS and WiMAX, provides users
with a wide range of upstream and downstream service rates.
Broadband users need to know whether they actually get the
service rates they pay for. On the other hand, ISPs now have
an extensive toolbox of traffic management mechanisms they
can apply to their customers’ traffic: application classifiers,
schedulers, active queue managers etc. In this paper we
focus on a class of such mechanisms referred to astraffic
shapersor traffic policers.1

A traffic shaper is a single-input single-output packet for-
warding module that behaves as follows: Consider a link of
capacityC bps, associated with a “token bucket” of sizeσ
tokens. Whenever the bucket is not full, tokens are gener-
ated at a rateρ tokens per second, withρ < C. The link can
transmit an arriving packet of sizeL bits only if the token
bucket has at leastL tokens - upon the transmission of the
packet, the shaper consumesL tokens from the bucket. So,
if we start with a full token bucket of sizeσ tokens, and with
a large burst of packets of sizeL bits each (suppose thatσ

∗School of Computer Science, Contact author: partha@cc.gatech.edu
1When it is not important to distinguish between shaping and policing, we
will simply refer to such mechanisms as “traffic shapers” or just “shapers”.

is an integer multiple ofL for simplicity), the link will be
able to transmitk of those packets at the rate of the capacity
C, with k = σ/L

1−ρ/C . After thosek packets, the link will start
transmitting packets at the token generation rateρ. Usually
ρ is referred to as the “shaping rate”, the capacityC is also
referred to as the “peak rate”, whileσ is referred to as the
“maximum burst size”. Another way to describe a traffic
shaper is by specifying that themaximum number of bytes
that can be transmitted in any interval of durationτ , starting
with a full token bucket, is:

Â(τ) = min{L + Cτ, σ + ρτ}

The difference between a traffic shaper and a traffic policer
is that the former has a buffer to hold packets that arrive
when the token bucket is empty [6]. A policer simply drops
such “non-conforming” packets. In other words, a shaper
delays packets that exceed the traffic shaping profile (σ, ρ),
while a policer drops them.2 Policers can cause excessive
packet losses and so shapers are more common in practice -
we focus on the latter in the rest of the paper.

Why would a residential ISP deploy traffic shaping? First,
to allow a user to exceed the service rate that he/she has paid
for, for a limited burst size. In that case the user pays forρ
bps, with the additional service capacityC − ρ is marketed
as a free service enhancement. This is, for instance, how
Comcast advertises their PowerBoost traffic shaping mecha-
nism [5]. Second, an ISP may want to limit the service rate
provided to the aggregate traffic produced or consumed by a
customer, or to limit the service rate consumed by a certain
application (e.g. BitTorrent). This form of shaping is rele-
vant to the “heated”network neutralitydebate. Third, certain
ISPs prefer to describe their service rates as upper bounds for
what the user will actually get, e.g., a downstream rate ofat
most6Mbps. In that case, a shaper can be used to enforce
the upper bound of the service rate.

The contribution of this paper is threefold. First, we de-
velop anactive end-to-end detection mechanism, referred
to asShaperProbe, that can infer whether a particular path
is subject to traffic shaping, and in that case, estimate the
shaper characteristicsC, ρ andσ. Second, we analyze re-
sults from a large-scale deployment of ShaperProbe on M-
Lab over the last few months, detecting traffic shaping in
several major ISPs. Our deployment received about one mil-
lion runs over the last two years from more than 5,700 ISPs;

2A shaper will also drop packets once its droptail buffer is full.
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Figure 1: ShaperProbe: volume of runs. The gaps in time
show downtime due to tool enhancements.

(a) Location of clients.

Figure 2: ShaperProbe: location of clients.

we currently receive 2,000-3,000 users a day (see Figures 2
and 1). Third, we modify the ShaperProbe detection algo-
rithm so that it can be applied passively on the traffic of any
TCP-based application. This approach can be used to de-
tect if an ISP shapes the traffic of specific applications. We
apply this passive method in the Network Diagnostic Tool
(NDT) traces [9] collected at M-Lab. NDT is a TCP speed
test and diagnosis tool, which collects packet traces for 10s
TCP bulk-transfers in upload and download directions.

Traffic shaping detection and estimation methods can be
used in different ways:as a library (API) that allows ap-
plications to adapt their performance in anopen-loopfash-
ion; and as aservicethat enables users and administrators
to verify their SLAs/shaping configurations. In this paper,
we design a service. There are several challenges that we
need to tackle when designing a service that can scale up to
thousands of users a day: fromaccuracyto usabilityto non-
intrusiveness(on the network). In the following sections, we
look at each of the factors.

The rest of this paper is structured as follows. Section 2
describes the active detection method. Section 3 discusses
implementation and deployment of ShaperProbe, and some
of the measurement systems issues we had to tackle over re-
visions of the tool. Section 4 looks at the data we collected
from ShaperProbe using case studies of four ISPs. Section

5 describes the passive detection method, and Section 6 ap-
plies the method to NDT traces. Section 7 covers related
work. We conclude in Section 8.

2. Active Probing Method
The active probing method is an end-to-end process in

which a senderSND sends packets on the network path
to the receiverRCV . We diagnose traffic shaping for the
pathSND → RCV atRCV . Suppose that the narrow link’s
capacity on the path isC, and that the sender probes at a
constant bit rateRs = C.

The receiverRCV records the received rate timeseriesRr(t).
We computeRr(t) by discretizing time into fixed size non-
overlapping intervals of size∆. For simplicity, assume that
the probing starts att = 0, and that intervals are numbered as
integersi ≥ 1. Thei’th interval includes all packets received
in the interval[(i − 1)∆, i∆), where packet timestamps are
taken atRCV upon receipt of the last bit of each packet. The
discretized received rate timeseriesRr(i) is estimated as the
total bytes received in intervali divided by∆. Note that this
estimator ofRr(t) can result in an error of up toǫ = ±S/∆
whereS is the MTU packet size. By choosing a reasonably
large∆, we can reduce the magnitude ofǫ relative to the true
received rate.

In the presence of a token bucket traffic shaper (or policer)
onSND → RCV , there exists a value ofi > 1 at which the
received rate timeseriesRr(i) undergoes alevel shift to a
lower value. Our goal is to detect the presence of a level
shift, and estimate the token bucket parameters usingRr(i).

2.1 Detection
We want to detect a level shift inRr in real-time(as we

compute the received rate in each new interval). Note that
the receiverRCV is also receiving (and timestamping) pack-
ets during this process. Hence, our detection method has to
be simple. Our detection method is straightforward and re-
lies on nonparametric rank statistics ofRr to be robust to
outliers [14].

We compute ranks online. Suppose that we have estimated
n values ofRr so far (in other words, the probing duration
is n∆). At the start of each new intervaln + 1 (receipt of
first packet in the interval), we computeRr(n) and update
the ranksr(i) of Rr(i) for i = 1 . . . n. We callτ as thestart
of level shiftif all of the following three conditions hold true
(for the smallest such index):

First, all ranks to the left ofτ areequal to or higherthan
all ranks to the right ofτ :

min
i=1...τ−1

r(i) ≥ max
j=τ+1...n

r(j) (1)

Second, we have observed a minimum time duration before
and after the current rate measurement:

nL < τ < n − nR (2)

The value ofnL is chosen based on empirical observations
of burst durations in ISPs, andnR is a sanity check to ensure
that the drop in rate is not a temporal variation (e.g., due to
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Figure 3: Active probing: Level shift detection.

cross traffic). Third, we require that there is adrop in the
median rate at pointτ :

R̃r(i)
i=1...τ

> γ R̃r(j)
j=τ...n

(3)

whereR̃r denotes the median, andγ is a suitable threshold
(we includeτ in both median estimates). We use the non-
parametric median rate instead of the mean so that we are
not heavily influenced by the magnitude of temporal drops
in rate. We chooseγ based on empirical observations of ca-
pacities and shaping rates in ISPs (Section 2.3).

Similarly, we detect theend of level shiftindex β such
that β ≥ τ andβ is the last point which satisfies the rate
condition in Equation 1. Figure 3 illustrates the two level
shift indices.

2.2 Estimation
After we detect a level shift, we estimate the token bucket

parameters from the rate timeseriesRr and the start and end
level shift indicesτ andβ. The token generation rate (shap-
ing rate)ρ is estimated as themedianof received rate mea-
surementsafterβ (median to be robust to outliers):

ρ̂ = R̃r(i)
i=β+1...n

(4)

We estimate the token bucket depth (burst size)σ from the
number of bytes sent till theτ ’th time interval. We estimate
a range forσ, since we discretize time in to intervals of size
∆, based on the estimate ofρ (ρ̂) and the received rates:

σ̂ =
τ∑

i=1

[R(i) − ρ̂]∆ ±
[R(i) − ρ̂] ∆

2
(5)

We assume in this discussion that the sent rate was always
higher thanρ - we ensure this by designing our probing
method to be able to send at a constant rate close to the nar-
row link capacity (Section 3).

2.3 Parameter Selection
We choose the parameters∆ andγ empirically, based on

our experience with shaping detections in ISPs. Some of the
parameters have been revised over new releases of Shaper-
Probe, and the current values are as follows.
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Figure 4: Advertised tiers for Comcast and Cox: requiredγ
andΛ.

Figure 4 shows the ratioγ and burst durations3 (minimum
time required to consume tokens of a full bucket) using ad-
vertised tier information that we collected for Cox, and for
Comcast in metro Atlanta. We note that all tiers have a
capacity-to-shaping rate ratio of 1.1 and above, with two out
of 36 tiers having a ratio of 1.1. We chooseγ = 1.1 in our
implementation. A conservative (low)γ works in practice,
given that we require a number of points before and after the
level shift, and that we send a constant rate probing stream.

We fix the probing durationΛ so that we detect as many
ISP shaping configurations as possible, while at the same
time keeping the total experiment duration reasonable in case
of no-shaping. We see from Figure 4 that the burst duration
is at most 48s, except for four tiers out of 36. We setΛ = 60s
in our implementation.

Next, the averaging window size∆ is chosen so that it
is large enough to offset estimation noise inRr and small
enough to include sufficient rate samples for detecting a level
shift in a probing time ofΛ. We fix ∆ as follows. We per-
form 100 trials in the upstream direction on a Comcast res-
idential connection, whose SLA we know (4.5Mbps shaped
to 2Mbps). Figure 5 shows the shaping detection rate for
different values of∆. We see that as∆ approaches the inter-
packet gap, the detection rate drops. We fix a large value,
∆ = 300ms, so that we can detect shaping in low capacity
links.

3. Implementing ShaperProbe
While implementing ShaperProbe, we faced several chal-

lenges in designing a tool that works well on a variety of
network conditions, OS platforms, and form factors (desk-
tops and portable devices). First, we require a fast and accu-
rate estimate of the narrow link capacity between the sender
and receiver; we use this estimate to probe the end-to-end
path. We use packet trains for capacity estimation; this es-
timate, however, has to be robust to non-FCFS links such

3Note that ISPs do not advertise bucket depths for some tiers;we choose
themost likelyσ for a givenρ based on the ShaperProbe data.
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Figure 5: Effect of∆: Comcast upstream.

as “noisy” 802.11 deployments in homes. Second, we de-
sign the probing method to be able to send at aconstant
rate, even at coarse-grained userspace OS timer granulari-
ties. While doing so, we avoid consuming CPU resources
on the sender. Third, the ShaperProbe client has to be non-
intrusive - it ends probing if it sees losses on the path (and
reports to the user a diagnostic). Finally, cross traffic on the
path may lead to temporal drops in the received rateRr, in
spite of the above implementation details - we need to de-
sign a filtering mechanism onRr that can removeoutliers.
We discuss all of the above details inAppendix A.

In this section, we describe the tool design and our expe-
rience in improving measurement accuracy, reliability and
mitigating noise, as well as our implementation of the M-
Lab ShaperProbe service [11], which has been operational
on M-Lab since May 2009.

The M-Lab Service:We have implemented the Shaper-
Probe client in user space on three platforms: Windows,
Linux, and OS X for 32-bit and 64-bit architectures. The
server runs on Linux. The non-GUI server-client function-
ality is about 6000 lines of open source native code. The
client is a download-and-click binary and does not require
superuser privileges or installation. A version of the Shaper-
Probe client has also been ported as a plugin to theVuzeBit-
Torrent client, and clocks several hundreds of users a day.

The server and client establish a TCP control channel for
signaling. The client starts with capacity estimation in both
upstream and downstream directions, and follows it with
shaping detection in each direction. At the server, we log
per-packet send and receive timestamps and sequence num-
bers for all probing phases of the tool, and the IP address
and server timestamp for each run.4 A typical run of Shaper-
Probe in a residential connection lasts for about 2.5-3 min-
utes.

ShaperProbe has been implemented as a service on M-Lab
[11]. We currently run ShaperProbe server replicas on 48
M-Lab machines connected to tier-1 ASes. For measure-
ment accuracy, we allow only one client at a time at one
server replica. Incoming client measurement requests are
4ShaperProbe data is provided unanonymized by M-Lab.
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Figure 6: Estimation accuracy: shaping emulation.

first served by one of three load balancers, which redirects
clients to a server instance uniform randomly; a fall-through
mechanism further redirects clients from busy servers. The
service has received about one million user runs over the last
two years, and we currently receive 2000-3000 runs a day.
Figures 2 and 1 show the volume and geography of runs.

4. Shaping in ISPs
In this section, we take a first look at results from the

ShaperProbe service deployed at M-Lab. We first look at
accuracy using two ISPs for which we know the shaping
ground truth, as well as using wide-area emulations.

Accuracy: We test the latest version of the ShaperProbe
service on two residential ISPs, AT&T and Comcast, at two
homes in metro Atlanta. We use the High-Speed Internet
service of Comcast, and the DSL service of AT&T. At ex-
periment time, Comcast was shaping{10Mbps up, 22Mbps
down} to{2Mbps up, 12Mbps down} [5], while AT&T fixed
link capacities to{512Kbps up, 6Mbps down} [2] without
shaping. Out of 60 runs, we found zero false positives in
either direction on AT&T, and two upstream false negatives
due to capacity underestimation (under cross traffic) on Com-
cast.

We next emulate token bucket shaping on a wide-area path
between a residential Comcast connection and a server de-
ployed at the Georgia Tech campus. We use the LARTC
tc tool on Linux with a 2.6.22 kernel on a dual-NIC 1GHz
Celeron router with 256MB RAM. Figure 6 shows the Wilcoxon
median estimate and confidence intervals for ShaperProbe’s
token parameter estimates on 20 trials for each token bucket
configuration in the downstream direction. ShaperProbe de-
tects all 200 trials as shaping, and accurately estimates the
shaping rate and bucket depth for all configurations.

We now look at an analysis of M-Lab data. The Shaper-
Probe service [11] has been up since May 2009, and had
seen several improvements over the first few months. We
start with preprocessing on our traces.

Data preprocessing:We analyze data collected from the
ShaperProbe service. First, we consider runs from the latest
ShaperProbe release, collected between 20th October 2009

4



ISP Upstream (%) Dwnstrm. (%)
Comcast 71.5(34874) 73.5(28272)

Road Runner 6.5 (7923) 63.9(5870)
AT&T 10.1 (8808) 10.9 (7748)
Cox 63 (5797) 47.4(4357)

MCI-Verizon 5.6 (8753) 8.4 (7733)

Table 1: Shaping detections: top-5 ISPs in terms of Shaper-
Probe runs. For each ISP we show percentage of runs with
detected shaping and number of total runs.

and 9th May 2011 (845,223 runs). Each run’s trace con-
tains per-packet timestamps and sequence numbers for up-
stream and downstream probing (“half runs”). Second, we
call a half run as “unfinished” if no shaping was detected
and the run lasted less than a threshold duration, and discard
such runs - we choose a conservative threshold of 50s. All
finished half runs which are not diagnosed as shaping are
considered as cases ofno-shaping. Note that ShaperProbe
probes each direction for 60s, and ends a half run if it either
found shaping or if it found packet losses during probing; a
half run can also be unfinished if the user aborted the client
before it could run to completion. After preprocessing, we
have a total of 281,394 upstream and 236,423 downstream
half runs from a total of 5,693 ISPs.

Next, we cluster AS numbers into ISPs using theirwhois
AS names. The AS information was obtained from Cymru’s
whois database in May 2011. We found that runs which
passed the pre-processing checks come from 5,167 ISPs.
The top five ISPs in terms of the number of runs we received,
and the fraction of shaping detections are shown in Table 1.

It should be noted that there are several factors that influ-
ence the fraction of shaping detections of an ISP. First, ISPs
provide multiple tiers of service, and some tiers may not
have shaping (and tiers evolve with time). Second, an ISP
may not deploy shaping in all geographic regions. Third,
the access link type can be a factor: a DSL provider can
dynamically change link capacity instead of shaping, while
a cable provider is more likely to shape since DOCSIS pro-
vides fixed access capacities. Fourth, for a given connection,
shaping could be dynamic based on time or load conditions
in the ISP. Fifth, an ISPA can advertise address prefixes on
its customers’ behalf, and some of these customers (sayB)
could be ISPs deploying shaping (whileA does not) - we
can not distinguishA from B based on BGP prefix-to-ASN
mapping. We study some of these factors in ISP case stud-
ies next. A few ISPs, however, disclose their tier shaping
configurations; in such cases, we validate our observations.

4.1 Case Study: Comcast
Comcast offers Internet connectivity to homes [5] and en-

terprises [3], and uses two types of access technologies: ca-
ble (DOCSIS 3.0) and Ethernet. In each access category, it
offers multiple tiers of service. Comcast shapes traffic using
the PowerBoost technology [4].

Shaping profiles: We observed many shaping configura-

C (Mbps) ρ (Mbps) σ (MB) Burst time (s)
3.5 1 5 16.7
4.8 2 5, 10 15.2, 30.5
8.8 5.5 10 25.8
14.5 10 10 18.8

(a) Upstream.

C (Mbps) ρ (Mbps) σ (MB) Burst time (s)
19.4 6.4 10 6.4
21.1 12.8 10 10.1
28.2 17 20 14.9
34.4 23.4 20 15.3

(b) Downstream.

Table 2: Comcast: detected shaping properties.

tions in our observations between October 2009 and May
2011. Figure 7 shows the shaping configuration (capacity,
shaping rate, and burst size) of each user run. We see that
there are strongmodesin the data; Table 2 is a summary of
these modes. For higher link capacities, we see more num-
ber of modes in the shaping rate; however, at the tail of the
capacity distribution, there is only one shaping rate that cor-
responds to the higher service tier provided by Comcast. We
verified our tier observations with the Comcast website list-
ings [3, 5]. Note that we may not observe all service tiers in
this figure, depending on the distribution of users we receive
across tiers. We also observe two to three burst sizes that are
used across all tiers; the PowerBoost FAQ mentions 10MB
and 5MB burst sizes [4].

Note that the capacity curves do not show strong modes,
unlike the shaping rates. This is due to the underlying DOC-
SIS access technology. The cable modem uplink is a non-
FIFO scheduler; depending on activity of other nodes at the
CMTS, the capacity estimates can vary due to the scheduling
and DOCSIS concatenation. A DOCSIS downlink can also
influence dispersion-based capacity estimates depending on
activity in the neighborhood, since it is a point-to-multipoint
broadcast link.

Did shaping configurations change with time?We com-
pare data separated by about two years from Comcast - col-
lected in October 2009-March 2010 and in 2011 (March-
May). Figure 8 shows pdf estimates of shaping rates using
a Gaussian kernel density function. We see that the capacity
and shaping rates in the upstream direction did not change
significantly; while the downstream links show a new ca-
pacity mode of 30Mbps and a shaping rate mode of 22Mbps
in 2011. We did not find significant changes in burst size
with time. Note that the above analysis assumes that the dis-
tribution of users across tiers remainedidenticalbetween the
two times.

Did shaping parameters change with time of day?We
compare runs at 1200 and 0000 hours UTC (timestamps are
taken at the server) in Figure 9; the data is taken from March-
May 2011. We see that the upstream shaping rates have a
similar distribution between the two times; the downstream
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Figure 7: Comcast: Shaping characteristics.
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Figure 8: Comcast: histogram of bandwidth with time.
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rates show a slight difference in densities - the lower shaping
rates show a higher density at evenings in US times (PST/EST).
The burst sizes show a similar trend - we see a higher den-
sity of lower burst sizes in the evenings than in the mornings.
Note that the above analysis assumes thatthe user sample (in
terms of tier) that we get at different hours of day are identi-
cally distributed.

Non-shaped runs: We look at all runs which were not
diagnosed as shaping. Figure 10 compares distributions of
capacities among such runs with shaping rates from shaping-
detected runs. The non-shaped capacity distributions are
similar to the shaping rate distributions; non-shaping runs
can occur due to one or more of the following two reasons.
First, Comcast provides service tiers which do not include
PowerBoost, but have capacities similar to tiers with Power-
Boost (e.g., the Ethernet 1Mbps and 10Mbps service for
businesses). Second, it is possible that cross traffic from the
customer premises resulted in an empty token bucket at the
start of the experiment, and hence the estimated capacity was
equal to the shaping rate (and we do not detect shaping).

4.2 Case Studies: Road Runner and Cox
Road Runner (RR) is a cable ISP that provides different

tiers of service. A unique aspect of RR is that we have found
evidence of downstream shaping, butno evidenceof up-
steam shaping in any tier on its web pages. The ShaperProbe
trials with Road Runner also support this observation - 94%
of upstream runsdid notdetect shaping, while 64% of down-
stream runs found shaping. Another aspect of RR is that the
website advertises shaping based on the geographic region;
for example, in Texas, RR provides four service tiers, the
lower two of which are not shaped, while the upper two tiers
are shaped [10]. Figure 11 shows the downstream shaping
properties in our RR runs. We see three dominant shaping
rates and a single dominant burst size. Under the hypothesis
that Road Runner is not shaping upstream traffic, we can say
that our false positive detection rate for its upstream is about
6.4%.

The distribution of capacity among non-shaping detected
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Figure 9: Comcast: Shaping rate with time of day.
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Figure 13: Cox: Upstream shaping.

RR runs is shown in Figure 12 (x-axis is truncated). An
interesting observation with the RR non-shaping runs is that,
unlike the case for Comcast, the downstream capacity mode
of 750Kbps in non-shaping runs does not equal any of the
shaping modes. This may indicate the possibility that some
of the runs in Figure 12 are tiers that do not include shaping.

Cox provides residential [7] and business Internet access
using cable and Ethernet access technologies. Similar to
Comcast and RR, Cox shapes traffic at different tiers for both
residential and business classes; the website shows that the
residential shaping rates and capacities are dependent on ge-
ography. Moreover, we could gather residential tier shaping
data from the Cox residential website [7]. For example, the
upstream shaping properties of Cox runs in Figure 13 agree
with some of the ground truth tier information that we found:
(C, ρ)Mbps: (1, 0.77), (1.3, 1), (2, 1.5), (2.5, 1), (2.5, 2), (3,
2), (3.5, 3), (5, 4) and (5.5, 5). Note that the ground truth we
collected represents a single time snapshot; while the data
covers two years. We also found a single burst size mode
among the runs.
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Figure 14: AT&T: Capacity of non-shaping runs.

4.3 Case Study: AT&T
Our final case study is that of an ISP for which we do not

see a significant number of shaping detections (10% or less).
AT&T provides Internet access to a wide range of customers,
from homes and small businesses to enterprises (including
other ISPs). They use DSL and Ethernet access technolo-
gies, and provide four tiers of DSL services [1, 2]. We did
not find any mention of traffic shaping in the AT&T tier de-
scriptions [1, 2].

Capacity: We first look at the 90% runs that were not
detected as shaping. The distribution of capacities of non-
shaped runs is shown in Figure 14. Given the point-to-point
nature of DSL links, we can estimate the narrow link capac-
ity more accurately than cable links; we see many modes
in the capacity distribution:{330Kbps, 650Kbps, 1Mbps,
1.5Mbps} for upstream, and{1Mbps, 2.5Mbps, 5Mbps, 6Mbps,
11Mbps, 18Mbps} for downstream. Note that some of these
rates might be offered by ISPs which are customers of AT&T,
but whose prefixes are advertised through an AT&T’s ASN.
We did not observe changes in the capacity modes between
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Figure 15: AT&T: pdf of capacity based on time of day.

2009, 2010 and 2011.
Did capacity change with time of day? We look at the

capacity distribution at two one-hour periods of day sepa-
rated by 12h; and consider non-shaping traces in the period
March-May 2011. Figure 15 shows a pdf of the capacity
at the two UTC times. We see that therelative densitiesof
link capacities did not change significantly between different
times of day.

Shaping runs: We look at properties of the 10% of AT&T
runs which were diagnosed as shaping; see Figure 16. We
see that about a third of these runs show a strong shaping
rate mode and an associated burst size mode. Out of the 333
runs which had a shaping rate mode, 80% of the hostnames
resolved to the domainmchsi.com, which is owned by the
cable ISP Mediacom [8]. This case represents a limitation
of our IP address to ISP translation method.

5. Passive Method
In this section, we design a technique for passive inference

of traffic shaping. The passive inference technique takes as
input an application packet trace (either real-time or offline)
at a senderSND or the receiverRCV5. The passive in-
ference method is useful over active probing to detect cases
where an ISP is shaping certain classes of traffic based on
parameters such as destination/source which may not always
be feasible to replicate with active probing.

We consider the specific case of a bulk-transfer applica-
tion that uses TCP. Detecting shaping on TCP traffic is chal-
lenging for a number of reasons. First, TCP throughput can
change with time depending on network conditions, and a
level shift in TCP throughput occurs every time TCP de-
creases its window due to timeouts or packet losses. Sec-
ond, TCP does not send a constant-rate stream, and so it
harder to estimate the number of tokens in the token bucket.
There can be time periods in which the TCP connection’s
throughput is below the shaping rate, causing accumulation
of tokens. Third, after shaping kicks-in, TCP backoffs and
timeouts can lead to accumulation of tokens (bringing the
5Since a TCP end-point can be both sender and receiver (depending on the
application), we distinguish sender from receiver based onuser input.

link service rate temporarily back to the capacity) - hence,
the rate may not be bounded byρ. We can not use the active
detection method as-is on TCP traces for the above reasons.
Specifically, our technique needs to distinguish throughput
level shifts due to a shaper from those due to TCP backoffs.

Our passive detection method works on the received rate
timeseriesRr(t), and uses two properties ofRr(t) when
there is a shaper: (1) there will be a timet at whichRr(t)
undergoes a level shift, and (2) after the level shift, the re-
ceived rate isalmost constant(for a duration that depends on
the connection’s round-trip time and the link buffer size).

Rate estimation: We begin by constructing a received
rate timeseriesRr(i), i ≥ 1, by dividing time into discrete
non-overlapping intervals of size∆. It is important that we
choose a suitable value for∆ so that we have sufficient num-
ber of rate measurements to detect a level shift, and at the
same time have lownoise. We estimate∆ based on the TCP
trace, since the inter-packet gaps can vary depending on TCP
backoffs and timeouts. In the NDT traces, we have observed
that some token bucket implementations generate tokens in
periodic intervals (δtb). Depending on the length of this in-
terval, packets buffered in a shaper that has no tokens will be
served in short bursts (of sizeρδtb bytes) at the link capacity
as long as there is a backlog. In order to reducevariancein
the post-shaping rate timeseries, we estimateRr(i) as fol-
lows.

We record the start and end timestamps of received pack-
ets in thei’th interval: call thems(i) ande(i). If we received
B(i) bytes in thei’th interval, we estimateRr(i) using the
inter-burst gapδb:

Rr(i) =
B(i)

δb

where,δb = max{s(i+1)−s(i), e(i)−e(i−1)}. The max.
condition is to avoid overestimates ofRr(i) by using a small
δb, especially in the post-shaping estimates. IfB(i) = 0 for
somei, we setRr(i) = 0. We ignore the TCP handshake
and termination exchanges when computingRr.

Note that in the above description, we assumed thatRr(i)
is estimated using the application packet trace atRCV. We
have implemented the previous method for a trace captured
atSND by observing sequence numbers of TCP ACKs from
RCV . This works even in the case of delayed ACKs, since
we treat each ACK as alogical packetatRCV , whose size
is determined by difference in ACK sequence numbers, and
whose receive timestamp is estimated as the receive times-
tamp of the corresponding ACK. We ignore duplicate ACKs
in this computation.

Note that it is unlikely that the TCP ACKs will be paced
due to shaping in the other direction during a TCP trans-
fer, since the MSS-to-ACK size ratio (about 28.8 without L2
headers) is much larger than the capacity ratio in asymmetric
links.

5.1 Detection
We use a sliding window of sizew points on the rate time-

seriesRr to detect shaping. The value ofw is chosen small
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Figure 16: AT&T: Shaping characteristics.

so that we can observe level shifts and constancy of a few
points after the level shift (without noticing TCP-based rate
drops). Suppose thatw is odd and letw = 2k+1 points. We
say that there is a level shiftdue to shapingat a given point
τ if all of the following conditions hold true in a windoww
centered atτ (we require thatτ > k).

First,k rate values beforeτ are larger than thek rate val-
ues afterτ :

min
i=(τ−k)...(τ−1)

R(i) ≥ max
j=(τ+1)...(τ+k)

R(j) (6)

Second, theaggregatethroughput ofw points beforeτ is sig-
nificantly larger than theaggregatethroughput ofw points
afterτ6:

R̄r(i)
i=(τ−w)...(τ−1)

> γ R̄r(j)
j=(τ+1)...(τ+w)

(7)

for a thresholdγ > 1. We use aggregate throughput and not
median, sincew is small. Third, we have received at least
one packet in each∆ interval afterτ in aw-window:

Rr(i) 6= 0, i = (τ + 1) . . . (τ + w) (8)

This condition allows us to discard some cases of TCP time-
outs. Finally, we requireconstancy of ratein the w points
afterτ . We elaborate on this condition next.

Rate constancy:This condition differentiates TCP recov-
ery dynamics after a loss/timeout from the output of a shaper
just after it runs out of tokens. The property we test is that
just after the shaper runs out of tokens, incoming packets are
buffered and serviced at the rateρ (for a sufficiently small
duration), since the incoming rate is larger thanρ. In other
words, in this period, the inter-packet gap will be aboutS/ρ,
whereS is the current packet size. In practice, however,
some token bucket implementations serve fixed-size bursts
of packets during a shaping period. The size of this burst
depends on the inter-token gapδtb and the token rateρ, and
6If τ is such that we have less thanw points before or after it, we consider
only those points.

each burst is served at the link capacityC, with a large inter-
burst gap. We account for this temporal burstiness in our rate
constancy heuristic.

The basic idea is to look at “variability” of a timeseries
of cumulative bytes,Bc(t), received atRCV . The variabil-
ity would be higher for TCP recovery than for output of a
shaper. In order to constructBc(t), we identify bursts of
packets served at the link capacity. We identify a burst as the
largest set of consecutive packets in which each packet pair
is received at a rate higher than0.9C. For each identified
burst, we add a point(t, B) to Bc(t), wheret is the times-
tamp of the first packet in the burst, andB is the cumulative
bytes received up to the end of that burst. At the end of the
window τ + w, if Bc(t) contains less than 5 points, we say
that the post-shaping rate isnot constant.

Once we constructBc(t), we sample uniform randomly
pairs of points(t1, Bc(t1)) and construct the slopem1 of the
line connecting them. We construct 500 such samples (with
replacement), and estimate thenonparametric variabilityof
the set of slopesM = {m1 . . . m500}. The variability esti-
matev(M) of M is defined as(M0.9 − M0.1)/M0.5, where
Mp is thep-percentile value inM . We avoid using the para-
metric equivalent, coefficient of variation, since it can bebi-
ased by few “outlier” slope samples. We say that the rate
post-shaping isconstantif, for all packets received in the
time interval[τ +1, τ +w], v(M) < 0.15 (we observed that
this threshold is appropriate in our experiments with NDT
traces from various ISPs).

5.2 Estimation
Once we detect the presence of shaping at pointτ , we

determine the shaping parameters as follows.
The shaping rateρ is estimated as the aggregate received

rate in a window ofw points after pointτ (or m points if
there arek ≤ m < w points afterτ ):

ρ̂ = R̄r(j)
j=(τ+1)...(τ+w)

(9)
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The link capacityC is estimated as the aggregate received
rate inw points beforeτ :

Ĉ = R̄r(i)
i=(τ−w)...(τ−1)

(10)

It is relatively challenging to estimate the token bucket
depthσ since the TCP send rate can be variable, and the
arrival rate at the shaper can in fact be lower thanρ even be-
fore shaping starts. Given the received rate timeseriesRr(i),
the size of tokens in the token bucket at timei is given by the
recursive relation:

σ̂(i) = max {min {σ̂(i − 1) − [Rr(i) − ρ] ∆, σ} , 0}
(11)

where,σ is the bucket depth,̂σ(0) = σ, andσ̂(τ + 1) = 0.
We estimate the bucket depth asσ̂ = σ̂(0).

Equation 11 is nonlinear and depends onσ itself. We
solve forσ as follows. We construct a function̂σ(τ + 1) =
fσ(ρ, τ, Rr, ∆, σ̂) that gives the value of token bytes after
shaping,̂σ(τ + 1), given a value forσ = σ̂. The function
fσ has the following properties: (1) it is non-decreasing as
a function ofσ̂, (2) fσ ≈ 0 for σ̂ ≤ σ and (3)fσ increases
monotonically withσ for σ̂ > σ. We solve forσ using bi-
nary search on an interval[σmin, σmax] such thatσ is the
maximum value of̂σ for whichfσ ≈ 0.

In our implementation, we useσmin = 10KB, σmax =
100MB, and define the approx. relation above asfσ < 5KB
(close to the minimum bucket size on commercial imple-
mentations, as seen in NDT traces). Since binary search
finishes in logarithmic time, it is possible to implement the
above estimation in a live TCP capture.

5.3 Parameter Selection
We describe how we choose parameters∆, w, andγ, based

on our observations using NDT data from different ISPs.
Averaging interval: The value of∆ has to be large enough

so that we construct a low variance rate timeseries. We de-
termine∆ as thelargest value for which we do not have
any zero rate points inRr. In addition, we bound∆ so that
∆min < ∆ < ∆max. In our implementation, we empirically
choose∆max = 250ms and∆min = 30ms. 7The above up-
per bound on∆ implies that for a given TCP trace, we may
still have zero rate points inRr.

We efficiently determine the value of∆ using binary search.
For cases where the trace is collected at the senderSND, we
use∆max = 500ms to allow for TCP implementations that
use delayed ACKs.

Window size: The value ofw is chosen based on the esti-
mate of∆ and the trace durationΛ, as the number of∆ time
intervals that that fit in a fraction ofΛ: w = κΛ/∆ points
for someκ < 0.5. We chooseκ = 0.2 in our implementa-
tion, and round-offw to the nearest odd integer. Note that as
∆ increases,w decreases to accomodate the same window
duration.

7We could also choose∆min by estimating the connection’s round-trip
time at the time of the TCP handshake.

Rate ratio: The value ofγ is chosen so that we accom-
modate as many shaping cases as possible. We found that
γ = 1.6 helps in eliminating false positives due to TCP-
based rate drops. This value is larger thanγ in our active
detection method, and we are working on making it more
robust to TCP artifacts.

6. Evaluating Passive Detection
We use traces collected from M-Lab’s Network Diagnos-

tic Tool (NDT) [9] from 25 April to 27 April, 2010. NDT
performs a TCP bulk-transfer in upstream and downstream
directions for 10s and collects per-packet traces at the server
side kernel. Incoming NDT clients are redirected to the near-
est M-Lab NDT server instance based on latency.

We consider only finished runs of NDT, which have a half
run duration of exactly 10s. We analyze traces collected in
the client upstream direction, since the shaping may be more
likely to start in the limited duration of 10s in the upstream
than in the downstream direction.

Accuracy: To benchmark the accuracy of our passive method,
we collect 452 NDT upstream traces from March 11, 2010
from an M-Lab server in the US. We manually classify each
trace into shaping and non-shaping categories based on vi-
sual inspection of the rate timeseries. The averaging inter-
val to plot the rate timeseries is based on the passive algo-
rithm for determining∆. We found a total of 12 shaping
cases out of 452 cases. Our method detects 11 of 12 cases
as shaping, and all of the remaining 440 non-shaping cases
as non-shaping. Note that the number of shaping cases is
small (2.65%), since we are using a small experiment du-
ration (10s), and in addition, the onset of shaping can be
delayed due to TCP send rate variations.

We have also run the passive method on some of the Shaper-
Probe traces to verify that the two methods give consistent
results.

Traces: We now look at a larger set of NDT upstream
runs collected on 25-27 April 2010 for which we have ASN
to ISP name mapping (we use sibling data from [25]). We
have a total of 148,414 upstream runs from 900 ISPs. These
traces are collected fromall M-Lab servers, and correspond
to clients from countries including US. The top ISP shaping
detections by number of runs are Comcast, Road Runner,
Telecom Italia, AT&T, Verizon and Cox.

We found that we see 0-2.1% upstream shaping detections
for ISPs in the list, except for Cox, which had 20.5% (615
out of 2,998 runs) detections. For example, we saw 2.1%
(284 out of 13,536) shaping detections in Comcast. Note that
we observed less than 15% shaping detections for AT&T,
Road Runner, and Verizon in the ShaperProbe data. This
may be because of the experiment duration of 10s - for ex-
ample, in the case of Comcast (Table 2(a)), we see that the
minimum duration it takes to empty the token bucket among
the upstream configurations is 15.2s (with a constant bit-rate
stream sent at the link capacity); hence, we would not be able
to see shaping in a 10s Comcast upstream trace. The burst
duration may be longer with TCP rate variations, and we also
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Figure 17: Passive detection: Cox: upstream.

require a minimum duration ofk∆s after shaping. The frac-
tion of shaping detections also depends on the distribution
of runs among the tiers of the ISPs during the three-day data
collection period. Under the hypothesis that all upstream
tiers of Comcast exceed the 10s burst duration (or do not
have shaping), we can say that the false positive detection
rate for the passive method in cable upstream is about 2%.

6.1 Case Study: Cox
Among the ISPs in our traces, we found Cox to have a sig-

nificant number of upstream shaping detections of 20%. Us-
ing the per-region advertised shaping configurations we col-
lected from the Cox website [7], we computed the expected
burst duration (for a constant send rate ofC). Assuming a
burst size of 3MB that we observed in the ShaperProbe data,
we found that there is one tier which has a burst duration less
than 10s - this tier has a capacity of 25Mbps and a shaping
rate of 20Mbps (and burst duration of 5.03s).

Figure 17 shows shaping configurations of the Cox runs.
The plot shows strong shaping rate and burst size modes sim-
ilar to Figure 13, which is the counterpart using active prob-
ing (we show the same capacity ranges for the two plots). We
see that some tiers are not sampled in this data as compared
to those in ShaperProbe, since the latter is more historical.
All tiers in this plot have a burst duration less than 10s - for
example, for all runs with the 1Mbps shaping rate, the av-
erage capacity is 4.82Mbps; and with a 3MB token bucket
size, the expected burst duration is 6.6s.

We found the following advertised tiers on the Cox web-
site (in May 2010) for shaping rates of 1Mbps and 2Mbps:
{C,ρ} of {1.3, 1}Mbps,{2.5, 1}Mbps,{2.5, 2}Mbps, and
{3, 2}Mbps. We see that the range of the estimated capaci-
ties for these two shaping rates are higher than the advertised
rates. We plan to collect historical NDT traces to investigate
this observation as a part of future work.

7. Related Work
Traffic shaping and policing are available in many network

devices that work at L2 and above [21, 6]. Initial observa-
tions of downstream traffic shaping were recorded in a res-

idential access network study done by Dischingeret al. in
2007 [12]. They used a 10Mbps train for 10s to measure
received rate, and did not find evidence of upstream traffic
shaping.

Recent research efforts on detecting traffic discrimination
in ISPs resulted in the following tools. These tools compli-
ment our work by detecting trafficdifferentiationpolicies,
while we consider the problem of detecting and estimating
traffic shaping with and without differentiation. Glasnost
[13] uses aggregate throughput of an emulated application
and compares it with a baseline to determine throughput dif-
ferences, and has been deployed on M-Lab. NANO [20] fo-
cuses on detecting discrimination by comparing throughput
observations from multiple end-hosts. NetPolice [24] uses
ICMP probes to detect loss rate-based discrimination. NetD-
iff [18] uses ICMP performance and associates it with geog-
raphy to diagnose differences in backbone ISPs. POPI [17]
detects priority-based forwarding by observing loss ratesbe-
tween two flows. DiffProbe [15] detects delay and loss dis-
crimination by comparing an emulated application flow with
a normal flow. Weinsberget al. further infer weights of a dis-
criminatory scheduler [22]. In the classification area, traffic
morphing [23] tackles avoiding statistical classificationby
altering flow characteristics.

Capacity estimation in non-FIFO scheduling environments
such as wireless and cable upstream received attention in the
literature, since existing bandwidth estimation techniques as-
sume FIFO scheduling. Lakshminarayananet al. [16] pro-
pose Probegap for available bandwidth estimation in cable
upstream and in 802.11 links. Portoles-Comeraset al. study
the impact of contention delays on packets in a packet train
[19], which can, under certain conditions, result in the 802.11
capacity overestimates that we observed.

8. Discussion-Conclusion
Service providers increasingly deploy traffic management

practices such as shaping and policing to manage resource
hungry distributed applications. In this work, we presented
an end-to-end active probing, detection, and estimation method
of traffic shaping in ISPs. We have deployed our tool as a
service on the M-Lab platform for about a year now, and
discussed some of measurement issues that we have tackled
over three releases of ShaperProbe. We showed using runs
on two ISPs (with known shaping SLAs), and through em-
ulations, that ShaperProbe has false positive and false nega-
tive detection rates of less than 5% in both directions.

We presented a first large-scale study of shaping, in four
ISPs among our runs. We validated some of our observa-
tions using advertised tier data from ISPs. Characteristicof
our plots is a strong modality of shaping rates and burst sizes
across shaping detections, suggesting that ISPs typicallyde-
ploy a small set of shaping configurations. We found some
shaping detections for which the ISPs did not mention shap-
ing in their service descriptions8. Lack of publicly-available

8ISPs, however, typically mention in their SLAs that “listedcapacities may
vary”.
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information, however, does not necessary imply that these
are false detections.

We extended our active detection and estimation meth-
ods to work on passive TCP traffic traces. We evaluated the
passive detection method on upstream traces collected from
NDT on M-Lab. We also looked at detected shaping config-
urations of an ISP, and verified the configurations with the
corresponding ShaperProbe data.

We found that upstream TCP traces with a duration of 10s
are not sufficiently long to detect shaping. This can have
implications on speed tests that rely on 10s transfers (possi-
bly over TCP). The result of such a speed test would either
be close to the peak rate (before shaping), or a value that
falls between the peak rate and the shaping rate - because of
which a user may interpret the outcome as incorrect.

Appendix A: ShaperProbe Implementation
We have assumed in the discussion in Section 2 that we have
an estimate of the narrow link capacity. In practice, we can
have cross traffic in the path, last mile wireless links, and
end-host effects, which can add significantly to probing and
measurement noise.

Capacity Estimation.We require an estimate of the nar-
row link capacity on theSND → RCV path before we
probe for traffic shapers, since it determines our probing rate.
We need an accurate estimate so that: (1) we minimize intru-
siveness, i.e., not create persistent queue backlogs in thepath
due to our probing, and (2) we are able to consume tokens in
the experiment duration. We implement capacity estimation
as apre-probingphase.

We estimate capacity using UDP packet trains. Specifi-
cally, SND sends a packet train ofN MTU-sized (sizeS)
back-to-back packets{p1, p2 . . . pN} to RCV . After receiv-
ing the train,RCV estimates the narrow link capacity using
the train dispersionδ (calculated as the difference between
received timestamps ofpN andp1):

Ĉ =
(N − 1)S

δ

We repeat this measurement forK trains and determine the
path capacity as the median of theK train estimates to re-
duce underestimates due to cross-traffic. In our implementa-
tion, we useN = 50 packets andK = 10 trains. Note that if
we do not receive a part of the train9, we useN as the num-
ber of received packets, andδ is computed as the dispersion
of thereceivedtrain.

In practice, we found that the above methodology works
well for wired end-hosts, but tends to incorrectly estimate
the narrow link capacity in the downstream direction when
the last mile is a wireless (802.11a/b/g) link - in cases where
the narrow link is not the wireless link. This overestima-
tion10 occurs because of the non-work-conservingcontention
9We use a timeout of 1s to receive each packet of the train.

10Typical downstream train overestimates on 802.11g are in the range 25-
35Mbps, close to the L2 channel throughput.

delay process in CSMA/CA access links, due to which a
downstream train may have to wait until the channel is free
[19]. We also observed differences in overestimates with
some 802.11g NICs depending on the operating system/driver
implementation. In order to avoid such overestimates, we
send along packet train after we determine the train-based
capacity estimate. Specifically, if the train-based estimate is
ĈT , we send a UDP stream of MTU-sized packets at a rate
ĈT on SND → RCV for a duration of 5s and revise our
capacity estimate to be the aggregate received rate in that
duration. Note that this UDP stream will only induce large
queue backlog if we have a significant capacity overestimate.

Probing and Non-intrusiveness.It is important that we
send the probing stream for shaping detection at a constant
rate that is close to the capacityC for two reasons. First,
we may detect false negatives if we cannot send at a rate
equal to the path capacity. Second, end-host effects such
as operating system noise and context switches due to the
client environment can lead to drops in the sending rate at
SND, leading to potential false positives. We probe using
MTU-sized (sizeS) packets, and send all probing traffic over
UDP.

Probing: The goal of the sender is to send a sequence of
packets at a rate close toC, for a maximum ofΛ = 60s. For
a given sending rate, implementations of packet trains typi-
cally use a CPU-intensive busy-wait loop to maintain inter-
packet gaps at userspace. Busy-wait loops can lead to a drop
in send rate, since a sender process running forextended pe-
riods would yield to other processes. To avoid such scenar-
ios, we send periodicshort-duration trainsof back-to-back
packets to minimize time spent in busy-waits.

We determine the length of short-duration trains at run-
time as follows. The idea is to minimize the duration spent
on busy-waits. We first measure the userspace sleep res-
olution periodts on SND, which is the minimum dura-
tion the send process can sleep without the need for a busy-
wait loop. The train lengthNp (packets) is then determined
as the value which minimizes the residual delayd(Np) =
Npg − ⌊Npg/ts⌋ts whereg = S/C (the inter-packet gap).
We upper boundNp to 30 packets to accommodate OSes
with a low sleep time resolution (e.g., some flavors of Win-
dows). We maintain the probing rate by: (1) sending train of
sizeNp, (2) sleeping for a durationts for ⌊Npg/ts⌋ (integer)
times; followed by (3) ashortbusy-wait ford(Np).

Non-intrusiveness: We stop probing atSND if either
of the following is true: (1)RCV detected a traffic shaper,
(2)SND probed for the experiment durationΛ, or (3)RCV
detected packet losses. We record the packet loss rate in time
windows of∆. We abort on packet losses if we either see a
low loss rate (more than 1%) for a small time period, or if
we see a high loss rate (more than 10%) for a smaller time
period (a few consecutive time windows - it is necessary that
this duration is longer thannR∆).
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Filtering Rate Noise.The received rate timeseriesRr may
have temporal variations (“noise”) at∆-timescales in prac-
tice, even ifSND sends at a constant rate, due to cross traf-
fic variations in intermediate links or due to end-host noise
at RCV . Such noise manifests asoutliers. We pre-process
theRr timeseries with a simple filtering heuristic before run-
ning the level shift algorithm. Each time we compute a new
rate valueRr(n), we condition the valueRr(n−nf ) as fol-
lows (assumingn > 2nf ). We compute the median ofnf

rate points to the left (saỹRl
nf

) andnf points to the right

(say R̃r
nf

) of the pointn − nf . We modify Rr(n − nf )

if it is either greater than or less thanboth R̃l
nf

and R̃r
nf

.
Under this condition, we modify the rate value to the mean
Rr(n−nf) = (R̃l

nf
+R̃r

nf
)/2. We condition each rate point

at most once during the experiment.
When we modify a rate point, we need to recompute ranks

of all rate values that fall between the old value and the new
value ofRr(n − nf ). Note that this filtering method would
not changerate values that lie in thenf -neighborhood of the
level shift pointsτ andβ, since the median condition on the
n − nf point would not be satisfied for such points. We say
that a rateRa is larger thanRb if Ra > γRb whereγ is the
rate threshold in Equation 3.
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