

Agenda

- Basics of LTE
- LTE and SAE
- SAE Architecture
- SAE Introduction
- Summary

Agenda

- Basics of LTE
- LTE and SAE
- SAE Architecture
- SAE Introduction
- Summary

ERICSSON 🗲

From GSM to LTE

Radio Network Core Network Release Ph 1, 2 LTE Ph 2+, R97 WCDMA R99 SAE **R99 HSDPA** GPRS (PS) EUL **R5 eHSPA** R6 GSM (CS) GPRS (PS) GSM (CS) **R7** EDGE (PS) R8

LTE/SAE Visions

- LTE/SAE shall further enhance the 3GPP community competitiveness and cost efficiency with respect to mobile and fixed services, providing data rates beyond 100 Mbps
- LTE/SAE shall be suited for refarming of e.g., the GSM bands and deployments in upcoming allocations
- LTE/SAE shall utilize common technologies for different modes, e.g., FDD, TDD, in different frequency bands, with different bandwidths
- The ecosystem for 3G shall be expanded, giving high volumes and vendor competition in ONE common equipment and applications market for both LTE/SAE and 3G

Broadband growth

> 1.8 billion subscriptions 2012

Source: OVUM, Strategy Analytics & Internal Ericsson

Broadband becomes personal

ERICSSON 🗲

Integration with other accesses

2G/3G/LTE and WLAN

- A main new area introduced in SAE is the integration with other access types for fixed and nomadic usage such as Fixed Broadband, WLAN at home, WLAN hot spots and WiMAX
 - Session mobility between 2G/3G/LTE and other access types
 - Roaming using other access types

 Strong growth of WLAN enabled 2G/3G handsets

Source: Strategy Analytics

ERICSSON 🔰

LTE/SAE Concepts

- Flat 2-node architecture for optimized payload path
- Excellent scalability
- High level of security
- Simple QoS model
- Low delays
- Efficient radio
- Flexible spectrum utilization
- Cost efficient deployment

Driving forces for LTE/SAE

Performance

- Higher peak rates
- Higher bandwidth
- Low delay/latency

Cost efficiency

- Low cost per bit
- Low OPEX
- Simpler operation
- Cost-effective migration

Spectrum flexibility

- New and existing bands
- Flexible bandwidth
- Duplex flexibility: FDD and TDD

3GPP LTE Performance Targets

High data rates

- Downlink: >100 Mbps
- Uplink: >50 Mbps
- Cell-edge data rates
 2-3 x HSPA Rel. 6

Low delay/latency

- User plane RTT: <10 ms
- Channel set-up: <100 ms
- High spectral efficiency
 - Targeting 3 x HSPA Rel. 6
- High Performance Broadcast services
- Cost-effective migration

Focus on services from the packet-switched domain

© Ericsson Austria GmbH 10 SAE - The Core Network for LTE 2008-04-10 ERICS

Network evolution

Opportunities for LTE

LTE supports a multitude of implementation scenarios

ERICSSON 🗲

3GPP bands for LTE FDD & TDD

FDD			
Band	"Identifier"	Frequencies (MHz)	
1	IMT Core Band	1920-1980/2110-2170	
П	PCS 1900	1850-1910/1930-1990	
Ш	GSM 1800	1710-1785/1805-1880	
IV	AWS (US & other)	1710-1755/2110-2155	
V	850	824-849/869-894	
VI	850 (Japan)	830-840/875-885	
VII	IMT Extension	2500-2570/2620-2690	
VIII	GSM 900	880-915/925-960	
IX	1700 (Japan)	1750-1785/1845-1880	
Х	3G Americas	1710-1770/2110-2170	

TDD		
Band	"Identifier"	Frequencies (MHz)
а	TDD 2000	1900-1920 2010-2025
b	TDD 1900	1850-1910 1930-1990
С	PCS Center Gap	(1915)1910-1930
d	IMT Extension Center Gap	2570-2620

Wide range of bands enables global support

Additional bands proposed to be specified in 3GPP

- 450-470 MHz
- 698-806 MHz for US
- part of 698-862 MHz for CEPT and others
- 3400-3800 MHz

In **bold** to be specified in a near time schedule

LTE Standardization timeline

■ Technically stable specifications (>80% complete)

Agenda

- Basics of LTE
- LTE and SAE
- SAE Architecture
- SAE Introduction
- Summary

ERICSSON 🗲

What is LTE and SAE?

Teminology

LTE = Long Term Evolution (also known as eUTRAN)

SAE = System Architecture Evolution (3GPP technical study item defining EPC)

EPC = Evolved Packet Core

EPS = Evolved Packet System incl EPC, LTE and terminals

EPS (LTE/SAE) Architecture

- The EPS architecture is made up of an EPC (Packet Core Network) and an eUTRAN Radio Access Network
- The CN provides access to external packet IP networks and performs a number of CN related functions (e.g. QoS, security, mobility and terminal context management) for idle (camped) and active terminals
- The RAN performs all radio interface related functions for terminals in <u>active</u> mode

eUTRAN (LTE) interfaces

MME: Mobility Management Entity

UPE: User Plane Entity

EPS Architecture

EPS Functionality Distribution

- The Enhanced Node B (eNB) hosts the following functions:
 - Radio Resource Management
 - Radio Bearer Control
 - Radio Admission Control
 - Connection Mobility Control
 - Dynamic allocation of resources to UEs in both uplink and downlink (scheduling)
 - IP header compression and encryption of user data stream
 - Selection of an MME at UE attachment
 - Routing of User Plane data towards SAE Gateway
 - Measurement and measurement reporting configuration for mobility and scheduling
- The MME hosts the following functions
 - Distribution of paging messages to the eNBs
 - Security control
 - Idle state mobility control
 - SAE bearer control
 - Ciphering and integrity protection of NAS signalling.
- The SAE Gateway hosts the following functions:
 - Termination of U-plane packets
 - Switching of U-plane for support of UE mobility

Agenda

- Basics of LTE
- LTE and SAE
- SAE Architecture
- SAE Introduction
- Summary

LTE and SAE architecture

Optimized for performance and cost efficiency

3G Direct Tunnel

Packet Core network optimization for HSPA

- "Direct Tunnel" support added for 3G payload optimization
- Cost efficient scaling for Mobile Broadband deployments
- Increased flexibility in terms of network topology
- Allows the SGSN node to be optimized for control plane
- Specifications part of 3GPP rel-7
- Designed for operation in legacy (GGSN/UTRAN) networks
- First step towards the SAE architecture

3G Direct Tunnel – concept Direct connect between RNC and GGSN

Legend:
GTP User plane
GTP signalling
RANAP signalling

SAE architecture 3GPP operator

Detailed view, non-roaming case, 3GPP accesses

SAE architecture 3GPP2 operator

Detailed view, non-roaming case, 3GPP2 accesses

SAE architecture other accesses

Detailed view, non-roaming case

Policy & Charging Control

Extending today's model

SAE Roaming support

Extending today's successful model

- · Basic case: home tunnelling
- Smooth upgrade to support LTE and other accesses
- Support for 3 operator model
- GTP and MIP options for roaming

Note: HSS and AAA excluded for simplicity

- Advanced case: both home tunnelling and local breakout possible
- Roaming controlled by home network policies
- PCRF-to-PCRF roaming interface
- GTP and MIP options for roaming

ERICSSON \$

SAE impact on IMS

Overview

- LTE is a packet only access, no CS
 - optimized for IP based services, including telephony (MMTel)
 - HO to CS voice being specified (single-radio VCC)
- The Packet core evolution is largely transparent to IMS
 - including Multi Access mobility and LTE support
- ... but new accesses added
 - impact services with access awareness
 - enhancement of PCRF functionality and Rx for new accesses
- Local usage of IP services when roaming
 - PCRF-PCRF roaming interface
- Emergency call prioritization and Location services

SAE standardization

Large global effort

- Participation from the whole telecom industry
 - More than 20,000 LTE/SAE contributions for 2007
- Companies with more than 50 contributions for LTE/SAE
 - Ericsson, Nokia, Motorola, Samsung, Qualcomm,
 NokiaSiemensNetworks, NTT DoCoMo, LG Electronics,
 Alcatel-Lucent, Nortel, NEC, Huawei, Panasonic, Siemens,
 CATT, Vodafone, ZTE Corporation, Texas Instruments, IP
 Wireless, Huawei, Orange, Mitsubishi, Marvell, T-Mobile,
 ETRI, Fujitsu, Intel, Telecom Italia, Sharp, China Mobile,
 KDDI, Philips, InterDigital, AT&T, Freescale, Starent, Cisco,
 Nextwave, Verizon Wireless

SAE standardization

Timeline Jan 2008

Specifications

Technically stable specifications (>80% complete)

Agenda

- Basics of LTE
- LTE and SAE
- SAE Architecture
- SAE Introduction
- Summary

Deployment example of LTE with GERAN/UTRAN

- 3GPP Rel-7 specifies the feature called "3G Direct Tunnel" where the user plane goes direct between RNC and GGSN
- 3GPP Rel-8 specifies an SAE GW and an MME.
 SW upgrade of the GGSN gives the SAE GW functionality and the MME functionality in the SGSN
- LTE capable eNode Bs are introduced

Smooth / Architecture evolution

1) Mobile broadband introduction

2) Boosting the packet capacity

- 3G Direct Tunnel
- MBMS
- HSPA evolution

3) Introduction of LTE/SAE

4) User plane optimization

- Regional/local IP PoPs
- Centralized servers reduce OPEX
- Optimized IP saves transport, reduces delays
- Synergies with fixed access

Agenda

- Basics of LTE
- LTE and SAE
- SAE Architecture
- SAE Introduction
- Summary

ERICSSON 🗲

Summary – the Evolved Packet Core

- LTE/SAE provides spectrum flexibility, reduced TCO and high performance for Mobile Broadband networks
- Smooth migration to a flat and optimized 2-node architecture

Cost efficiency, high performance and network migration being targeted

migration being targeted

- Scalable & Robust
- All IP

